Synergy-Dependent Center-of-Mass Control Strategies During Sit-to-Stand Movements

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Simone Ranaldi;Leonardo Gizzi;Giacomo Severini;Cristiano De Marchis
{"title":"Synergy-Dependent Center-of-Mass Control Strategies During Sit-to-Stand Movements","authors":"Simone Ranaldi;Leonardo Gizzi;Giacomo Severini;Cristiano De Marchis","doi":"10.1109/OJEMB.2024.3454970","DOIUrl":null,"url":null,"abstract":"The characterization, through the concept of muscle synergies, of clinical functional tests is a valid tool that has been widely adopted in the research field. While this theory has been exploited for a description of the motor control strategies underlying the biomechanical task, the biomechanical correlate of the synergistic activity is yet to be fully described. In this paper, the relationship between the activity of different synergies and the center of mass kinematic patterns has been investigated; in particular, a group of healthy subjects has been recruited to perform simple sit-to-stand tasks, and the electromyographic data has been recorded for the extraction of muscle synergies. An optimal model selection criterion has been adopted for dividing the participants by the number of synergies characterizing their own control schema. Synergistic activity has then been mapped onto the phase-space description of the center of mass kinematics, investigating whether a different number of synergies implies the exploration of different region of the phase-space itself. Results show how using an additional motor module allow for a wider trajectory in the phase-space, paving the way for the use of kinematic feedback to stimulate the activity of different synergies, with the aim of defining synergy-based rehabilitation or training protocols.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"28-34"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666157","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666157/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The characterization, through the concept of muscle synergies, of clinical functional tests is a valid tool that has been widely adopted in the research field. While this theory has been exploited for a description of the motor control strategies underlying the biomechanical task, the biomechanical correlate of the synergistic activity is yet to be fully described. In this paper, the relationship between the activity of different synergies and the center of mass kinematic patterns has been investigated; in particular, a group of healthy subjects has been recruited to perform simple sit-to-stand tasks, and the electromyographic data has been recorded for the extraction of muscle synergies. An optimal model selection criterion has been adopted for dividing the participants by the number of synergies characterizing their own control schema. Synergistic activity has then been mapped onto the phase-space description of the center of mass kinematics, investigating whether a different number of synergies implies the exploration of different region of the phase-space itself. Results show how using an additional motor module allow for a wider trajectory in the phase-space, paving the way for the use of kinematic feedback to stimulate the activity of different synergies, with the aim of defining synergy-based rehabilitation or training protocols.
从坐到站运动过程中依赖协同作用的质量中心控制策略
通过肌肉协同作用的概念来描述临床功能测试是一种有效的工具,已被研究领域广泛采用。虽然这一理论已被用于描述生物力学任务背后的运动控制策略,但协同活动的生物力学相关性仍有待全面描述。本文研究了不同协同活动与质量中心运动模式之间的关系;特别是,招募了一组健康受试者执行简单的坐立任务,并记录了肌电图数据以提取肌肉协同活动。我们采用了一种最佳模型选择标准,根据参与者自身控制模式的协同作用数量对其进行划分。然后将协同活动映射到质心运动学的相空间描述上,研究不同数量的协同是否意味着对相空间本身不同区域的探索。研究结果表明,使用额外的运动模块可以在相空间中获得更宽的轨迹,从而为使用运动反馈来刺激不同协同作用的活动铺平道路,目的是定义基于协同作用的康复或训练方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信