Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson
{"title":"Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology","authors":"Jose L. Agraz;Carlos Agraz;Andrew A. Chen;Charles Rice;Robert S. Pozos;Sven Aelterman;Amanda Tan;Angela N. Viaene;MacLean P. Nasrallah;Parth Sharma;Caleb M. Grenko;Tahsin Kurc;Joel Saltz;Michael D. Feldman;Hamed Akbari;Russell T. Shinohara;Spyridon Bakas;Parker Wilson","doi":"10.1109/OJEMB.2024.3455011","DOIUrl":null,"url":null,"abstract":"In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"35-40"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669194/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.