Universal End-to-End Neural Network for Lossy Image Compression

Bouzid Arezki, Fangchen Feng, Anissa Mokraoui
{"title":"Universal End-to-End Neural Network for Lossy Image Compression","authors":"Bouzid Arezki, Fangchen Feng, Anissa Mokraoui","doi":"arxiv-2409.06586","DOIUrl":null,"url":null,"abstract":"This paper presents variable bitrate lossy image compression using a\nVAE-based neural network. An adaptable image quality adjustment strategy is\nproposed. The key innovation involves adeptly adjusting the input scale\nexclusively during the inference process, resulting in an exceptionally\nefficient rate-distortion mechanism. Through extensive experimentation, across\ndiverse VAE-based compression architectures (CNN, ViT) and training\nmethodologies (MSE, SSIM), our approach exhibits remarkable universality. This\nsuccess is attributed to the inherent generalization capacity of neural\nnetworks. Unlike methods that adjust model architecture or loss functions, our\napproach emphasizes simplicity, reducing computational complexity and memory\nrequirements. The experiments not only highlight the effectiveness of our\napproach but also indicate its potential to drive advancements in variable-rate\nneural network lossy image compression methodologies.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents variable bitrate lossy image compression using a VAE-based neural network. An adaptable image quality adjustment strategy is proposed. The key innovation involves adeptly adjusting the input scale exclusively during the inference process, resulting in an exceptionally efficient rate-distortion mechanism. Through extensive experimentation, across diverse VAE-based compression architectures (CNN, ViT) and training methodologies (MSE, SSIM), our approach exhibits remarkable universality. This success is attributed to the inherent generalization capacity of neural networks. Unlike methods that adjust model architecture or loss functions, our approach emphasizes simplicity, reducing computational complexity and memory requirements. The experiments not only highlight the effectiveness of our approach but also indicate its potential to drive advancements in variable-rate neural network lossy image compression methodologies.
用于有损图像压缩的通用端到端神经网络
本文介绍了使用基于 VAE 的神经网络进行可变比特率有损图像压缩的方法。本文提出了一种适应性强的图像质量调整策略。其关键创新点是在推理过程中巧妙地调整输入标度,从而形成一种异常高效的速率失真机制。通过广泛的实验、基于 VAE 的各种压缩架构(CNN、ViT)和训练方法(MSE、SSIM),我们的方法表现出了显著的通用性。这一成功归功于神经网络固有的泛化能力。与调整模型架构或损失函数的方法不同,我们的方法强调简单性,降低了计算复杂度和内存要求。实验不仅凸显了该方法的有效性,还表明它具有推动可变比率神经网络有损图像压缩方法进步的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信