Performance Assessment of Feature Detection Methods for 2-D FS Sonar Imagery

Hitesh Kyatham, Shahriar Negahdaripour, Michael Xu, Xiaomin Lin, Miao Yu, Yiannis Aloimonos
{"title":"Performance Assessment of Feature Detection Methods for 2-D FS Sonar Imagery","authors":"Hitesh Kyatham, Shahriar Negahdaripour, Michael Xu, Xiaomin Lin, Miao Yu, Yiannis Aloimonos","doi":"arxiv-2409.07004","DOIUrl":null,"url":null,"abstract":"Underwater robot perception is crucial in scientific subsea exploration and\ncommercial operations. The key challenges include non-uniform lighting and poor\nvisibility in turbid environments. High-frequency forward-look sonar cameras\naddress these issues, by providing high-resolution imagery at maximum range of\ntens of meters, despite complexities posed by high degree of speckle noise, and\nlack of color and texture. In particular, robust feature detection is an\nessential initial step for automated object recognition, localization,\nnavigation, and 3-D mapping. Various local feature detectors developed for RGB\nimages are not well-suited for sonar data. To assess their performances, we\nevaluate a number of feature detectors using real sonar images from five\ndifferent sonar devices. Performance metrics such as detection accuracy, false\npositives, and robustness to variations in target characteristics and sonar\ndevices are applied to analyze the experimental results. The study would\nprovide a deeper insight into the bottlenecks of feature detection for sonar\ndata, and developing more effective methods","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater robot perception is crucial in scientific subsea exploration and commercial operations. The key challenges include non-uniform lighting and poor visibility in turbid environments. High-frequency forward-look sonar cameras address these issues, by providing high-resolution imagery at maximum range of tens of meters, despite complexities posed by high degree of speckle noise, and lack of color and texture. In particular, robust feature detection is an essential initial step for automated object recognition, localization, navigation, and 3-D mapping. Various local feature detectors developed for RGB images are not well-suited for sonar data. To assess their performances, we evaluate a number of feature detectors using real sonar images from five different sonar devices. Performance metrics such as detection accuracy, false positives, and robustness to variations in target characteristics and sonar devices are applied to analyze the experimental results. The study would provide a deeper insight into the bottlenecks of feature detection for sonar data, and developing more effective methods
二维 FS 声纳图像特征检测方法性能评估
水下机器人的感知能力对于海底科学勘探和商业运营至关重要。主要挑战包括照明不均匀和在浑浊环境中可视性差。高频前视声纳相机可以解决这些问题,它可以在几十米的最大范围内提供高分辨率图像,尽管存在高度斑点噪声、缺乏颜色和纹理等复杂问题。特别是,稳健的特征检测是自动物体识别、定位、导航和三维制图必不可少的第一步。针对 RGB 图像开发的各种局部特征检测器并不适合声纳数据。为了评估它们的性能,我们使用来自五种不同声纳设备的真实声纳图像对一些特征检测器进行了评估。在分析实验结果时,我们采用了一些性能指标,如检测精度、误报率以及对目标特征和声纳设备变化的鲁棒性。这项研究将有助于深入了解声纳特征检测的瓶颈,并开发出更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信