Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging

Yunzhen Wang, Haijin Zeng, Shaoguang Huang, Hongyu Chen, Hongyan Zhang
{"title":"Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging","authors":"Yunzhen Wang, Haijin Zeng, Shaoguang Huang, Hongyu Chen, Hongyan Zhang","doi":"arxiv-2409.07417","DOIUrl":null,"url":null,"abstract":"Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for\ncapturing three-dimensional multispectral images (MSIs) through the complex\ninverse task of reconstructing these images from coded two-dimensional\nmeasurements. Current state-of-the-art methods, predominantly end-to-end, face\nlimitations in reconstructing high-frequency details and often rely on\nconstrained datasets like KAIST and CAVE, resulting in models with poor\ngeneralizability. In response to these challenges, this paper introduces a\nnovel one-step Diffusion Probabilistic Model within a self-supervised\nadaptation framework for Snapshot Compressive Imaging (SCI). Our approach\nleverages a pretrained SCI reconstruction network to generate initial\npredictions from two-dimensional measurements. Subsequently, a one-step\ndiffusion model produces high-frequency residuals to enhance these initial\npredictions. Additionally, acknowledging the high costs associated with\ncollecting MSIs, we develop a self-supervised paradigm based on the Equivariant\nImaging (EI) framework. Experimental results validate the superiority of our\nmodel compared to previous methods, showcasing its simplicity and adaptability\nto various end-to-end or unfolding techniques.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs) through the complex inverse task of reconstructing these images from coded two-dimensional measurements. Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details and often rely on constrained datasets like KAIST and CAVE, resulting in models with poor generalizability. In response to these challenges, this paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging (SCI). Our approach leverages a pretrained SCI reconstruction network to generate initial predictions from two-dimensional measurements. Subsequently, a one-step diffusion model produces high-frequency residuals to enhance these initial predictions. Additionally, acknowledging the high costs associated with collecting MSIs, we develop a self-supervised paradigm based on the Equivariant Imaging (EI) framework. Experimental results validate the superiority of our model compared to previous methods, showcasing its simplicity and adaptability to various end-to-end or unfolding techniques.
用于快照压缩成像的高效一步扩散细化技术
编码孔径快照光谱成像(CASSI)是获取三维多光谱图像(MSI)的关键技术,其复杂的逆任务是从编码的二维测量数据中重建这些图像。目前最先进的方法主要是端到端方法,在重建高频细节方面存在局限性,而且往往依赖于 KAIST 和 CAVE 等受限数据集,导致模型的通用性较差。为了应对这些挑战,本文在快照压缩成像(SCI)的自监督适应框架内引入了一种新的一步扩散概率模型。我们的方法利用预先训练好的 SCI 重建网络,从二维测量中生成初始预测。随后,一步扩散模型产生高频残差来增强这些初始预测。此外,考虑到收集 MSIs 的成本较高,我们开发了基于等变成像(EI)框架的自监督范例。实验结果验证了我们的模型优于之前的方法,展示了它的简单性和对各种端到端或展开技术的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信