TabMixer: Noninvasive Estimation of the Mean Pulmonary Artery Pressure via Imaging and Tabular Data Mixing

Michal K. Grzeszczyk, Przemysław Korzeniowski, Samer Alabed, Andrew J. Swift, Tomasz Trzciński, Arkadiusz Sitek
{"title":"TabMixer: Noninvasive Estimation of the Mean Pulmonary Artery Pressure via Imaging and Tabular Data Mixing","authors":"Michal K. Grzeszczyk, Przemysław Korzeniowski, Samer Alabed, Andrew J. Swift, Tomasz Trzciński, Arkadiusz Sitek","doi":"arxiv-2409.07564","DOIUrl":null,"url":null,"abstract":"Right Heart Catheterization is a gold standard procedure for diagnosing\nPulmonary Hypertension by measuring mean Pulmonary Artery Pressure (mPAP). It\nis invasive, costly, time-consuming and carries risks. In this paper, for the\nfirst time, we explore the estimation of mPAP from videos of noninvasive\nCardiac Magnetic Resonance Imaging. To enhance the predictive capabilities of\nDeep Learning models used for this task, we introduce an additional modality in\nthe form of demographic features and clinical measurements. Inspired by\nall-Multilayer Perceptron architectures, we present TabMixer, a novel module\nenabling the integration of imaging and tabular data through spatial, temporal\nand channel mixing. Specifically, we present the first approach that utilizes\nMultilayer Perceptrons to interchange tabular information with imaging features\nin vision models. We test TabMixer for mPAP estimation and show that it\nenhances the performance of Convolutional Neural Networks, 3D-MLP and Vision\nTransformers while being competitive with previous modules for imaging and\ntabular data. Our approach has the potential to improve clinical processes\ninvolving both modalities, particularly in noninvasive mPAP estimation, thus,\nsignificantly enhancing the quality of life for individuals affected by\nPulmonary Hypertension. We provide a source code for using TabMixer at\nhttps://github.com/SanoScience/TabMixer.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Right Heart Catheterization is a gold standard procedure for diagnosing Pulmonary Hypertension by measuring mean Pulmonary Artery Pressure (mPAP). It is invasive, costly, time-consuming and carries risks. In this paper, for the first time, we explore the estimation of mPAP from videos of noninvasive Cardiac Magnetic Resonance Imaging. To enhance the predictive capabilities of Deep Learning models used for this task, we introduce an additional modality in the form of demographic features and clinical measurements. Inspired by all-Multilayer Perceptron architectures, we present TabMixer, a novel module enabling the integration of imaging and tabular data through spatial, temporal and channel mixing. Specifically, we present the first approach that utilizes Multilayer Perceptrons to interchange tabular information with imaging features in vision models. We test TabMixer for mPAP estimation and show that it enhances the performance of Convolutional Neural Networks, 3D-MLP and Vision Transformers while being competitive with previous modules for imaging and tabular data. Our approach has the potential to improve clinical processes involving both modalities, particularly in noninvasive mPAP estimation, thus, significantly enhancing the quality of life for individuals affected by Pulmonary Hypertension. We provide a source code for using TabMixer at https://github.com/SanoScience/TabMixer.
TabMixer:通过成像和表格数据混合无创估算平均肺动脉压
右心导管检查是通过测量平均肺动脉压 (mPAP) 诊断肺动脉高压的金标准程序。这种方法具有侵入性、成本高、耗时长且有风险。在本文中,我们首次探索了从无创心脏磁共振成像视频中估算 mPAP。为了增强深度学习模型的预测能力,我们引入了人口统计学特征和临床测量结果等额外模式。受多层感知器(Multilayer Perceptron)架构的启发,我们推出了 TabMixer,这是一种通过空间、时间和通道混合实现成像和表格数据整合的新型模块。具体来说,我们提出了第一种利用多层感知器将表格信息与视觉模型中的成像特征互换的方法。我们对 TabMixer 进行了 mPAP 估算测试,结果表明它提高了卷积神经网络、3D-MLP 和视觉变换器的性能,同时在成像和表格数据方面与以前的模块相比也具有竞争力。我们的方法有望改善涉及这两种模式的临床流程,尤其是无创 mPAP 估算,从而显著提高肺动脉高压患者的生活质量。我们提供了使用 TabMixer 的源代码:https://github.com/SanoScience/TabMixer。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信