Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging

Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru
{"title":"Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging","authors":"Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru","doi":"arxiv-2409.08232","DOIUrl":null,"url":null,"abstract":"Segmenting brain tumors in multi-parametric magnetic resonance imaging\nenables performing quantitative analysis in support of clinical trials and\npersonalized patient care. This analysis provides the potential to impact\nclinical decision-making processes, including diagnosis and prognosis. In 2023,\nthe well-established Brain Tumor Segmentation (BraTS) challenge presented a\nsubstantial expansion with eight tasks and 4,500 brain tumor cases. In this\npaper, we present a deep learning-based ensemble strategy that is evaluated for\nnewly included tumor cases in three tasks: pediatric brain tumors (PED),\nintracranial meningioma (MEN), and brain metastases (MET). In particular, we\nensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a\nregion-wise basis. Furthermore, we implemented a targeted post-processing\nstrategy based on a cross-validated threshold search to improve the\nsegmentation results for tumor sub-regions. The evaluation of our proposed\nmethod on unseen test cases for the three tasks resulted in lesion-wise Dice\nscores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555,\n0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively.\nOur method was ranked first for PED, third for MEN, and fourth for MET,\nrespectively.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmenting brain tumors in multi-parametric magnetic resonance imaging enables performing quantitative analysis in support of clinical trials and personalized patient care. This analysis provides the potential to impact clinical decision-making processes, including diagnosis and prognosis. In 2023, the well-established Brain Tumor Segmentation (BraTS) challenge presented a substantial expansion with eight tasks and 4,500 brain tumor cases. In this paper, we present a deep learning-based ensemble strategy that is evaluated for newly included tumor cases in three tasks: pediatric brain tumors (PED), intracranial meningioma (MEN), and brain metastases (MET). In particular, we ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a region-wise basis. Furthermore, we implemented a targeted post-processing strategy based on a cross-validated threshold search to improve the segmentation results for tumor sub-regions. The evaluation of our proposed method on unseen test cases for the three tasks resulted in lesion-wise Dice scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555, 0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively. Our method was ranked first for PED, third for MEN, and fourth for MET, respectively.
磁共振成像中的脑肿瘤分割模型组合
通过对多参数磁共振成像中的脑肿瘤进行分段,可以进行定量分析,为临床试验和个性化病人护理提供支持。这种分析有可能影响临床决策过程,包括诊断和预后。2023 年,成熟的脑肿瘤分割(BraTS)挑战赛有了实质性的扩展,共有八项任务和 4500 个脑肿瘤病例。在本文中,我们提出了一种基于深度学习的集合策略,并针对新纳入的三个任务中的肿瘤病例进行了评估:小儿脑肿瘤(PED)、颅内脑膜瘤(MEN)和脑转移瘤(MET)。特别是,我们将最先进的 nnU-Net 和 Swin UNETR 模型的输出按区域进行了组合。此外,我们还在交叉验证阈值搜索的基础上实施了有针对性的后处理策略,以改进这些肿瘤子区域的分割结果。在对三个任务的未见测试案例进行评估后,我们提出的方法在增强肿瘤、肿瘤核心和整个肿瘤方面的病灶 Dicescores 分别为:PED:0.653、0.809、0.826;MEN:0.876、0.867、0.849;MET:0.555、0.6、0.58。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信