Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru
{"title":"Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging","authors":"Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru","doi":"arxiv-2409.08232","DOIUrl":null,"url":null,"abstract":"Segmenting brain tumors in multi-parametric magnetic resonance imaging\nenables performing quantitative analysis in support of clinical trials and\npersonalized patient care. This analysis provides the potential to impact\nclinical decision-making processes, including diagnosis and prognosis. In 2023,\nthe well-established Brain Tumor Segmentation (BraTS) challenge presented a\nsubstantial expansion with eight tasks and 4,500 brain tumor cases. In this\npaper, we present a deep learning-based ensemble strategy that is evaluated for\nnewly included tumor cases in three tasks: pediatric brain tumors (PED),\nintracranial meningioma (MEN), and brain metastases (MET). In particular, we\nensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a\nregion-wise basis. Furthermore, we implemented a targeted post-processing\nstrategy based on a cross-validated threshold search to improve the\nsegmentation results for tumor sub-regions. The evaluation of our proposed\nmethod on unseen test cases for the three tasks resulted in lesion-wise Dice\nscores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555,\n0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively.\nOur method was ranked first for PED, third for MEN, and fourth for MET,\nrespectively.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Segmenting brain tumors in multi-parametric magnetic resonance imaging
enables performing quantitative analysis in support of clinical trials and
personalized patient care. This analysis provides the potential to impact
clinical decision-making processes, including diagnosis and prognosis. In 2023,
the well-established Brain Tumor Segmentation (BraTS) challenge presented a
substantial expansion with eight tasks and 4,500 brain tumor cases. In this
paper, we present a deep learning-based ensemble strategy that is evaluated for
newly included tumor cases in three tasks: pediatric brain tumors (PED),
intracranial meningioma (MEN), and brain metastases (MET). In particular, we
ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a
region-wise basis. Furthermore, we implemented a targeted post-processing
strategy based on a cross-validated threshold search to improve the
segmentation results for tumor sub-regions. The evaluation of our proposed
method on unseen test cases for the three tasks resulted in lesion-wise Dice
scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555,
0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively.
Our method was ranked first for PED, third for MEN, and fourth for MET,
respectively.