Characteristics of soil moisture transport in the aeration zone of subsidence areas under the disturbance of coal seam mining

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS
Junmeng Li, Laiwei Wu, Yanli Huang, Bo Hu, Xiangru Wu, Guolei Cao
{"title":"Characteristics of soil moisture transport in the aeration zone of subsidence areas under the disturbance of coal seam mining","authors":"Junmeng Li, Laiwei Wu, Yanli Huang, Bo Hu, Xiangru Wu, Guolei Cao","doi":"10.1007/s40948-024-00840-3","DOIUrl":null,"url":null,"abstract":"<p>High-intensity coal mining has induced a series of ecological and environmental problems issues, including surface subsidence, the development of ground cracks, and the deterioration of vegetation. The disruption of water circulation systems induced by mining, such as perched groundwater, groundwater of aeration zone, and phreatic water, is the root cause of vegetation withering. The aeration zone serves as a crucial nexus in the process of water cycling and exerts a significant influence on soil fertility. To explore the characteristics of soil moisture transport in subsidence areas under the mining disturbance, on-site monitoring of the size and morphology characteristics of subsidence areas and ground cracks was conducted in typical mining areas in Inner Mongolia, China. Subsequently, a typical soil moisture transport model was constructed in subsidence areas, the soil moisture transport patterns under the influence of different types of subsidence and cracks were analyzed, and the influence law of soil damage on soil moisture transport in the aerated zone was clarified. The results indicate that (1) Based on the occurrence and distribution characteristics of subsidence cracks, the subsidence area can be divided into tension zone, compression zone, and neutral zone; the ground cracks are divided into permanent tension cracks and dynamic cracks. (2) The drought stress effect of soil in the subsidence area is significant. Under the influence of soil structure variation, the water-holding capacity of the soil in the subsidence area decreases, and the soil moisture dissipation is strong. The soil moisture transport rate in the aeration zone of the subsidence area is ranked as follows: tension zone &gt; neutral zone &gt; compression zone. (3) Ground cracks can exacerbate the soil moisture transport rate in the aeration zone. After 15 d of crack appearance, the soil moisture transport reaches a relatively stable state, and the soil moisture transport rate in the surface layer of the crack is the fastest, and the loss of soil moisture is the most significant. The crack effect is not significant beyond 100 cm from the crack. This study provides a theoretical and data support for soil and vegetation remediation in mining subsidence areas.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"52 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00840-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-intensity coal mining has induced a series of ecological and environmental problems issues, including surface subsidence, the development of ground cracks, and the deterioration of vegetation. The disruption of water circulation systems induced by mining, such as perched groundwater, groundwater of aeration zone, and phreatic water, is the root cause of vegetation withering. The aeration zone serves as a crucial nexus in the process of water cycling and exerts a significant influence on soil fertility. To explore the characteristics of soil moisture transport in subsidence areas under the mining disturbance, on-site monitoring of the size and morphology characteristics of subsidence areas and ground cracks was conducted in typical mining areas in Inner Mongolia, China. Subsequently, a typical soil moisture transport model was constructed in subsidence areas, the soil moisture transport patterns under the influence of different types of subsidence and cracks were analyzed, and the influence law of soil damage on soil moisture transport in the aerated zone was clarified. The results indicate that (1) Based on the occurrence and distribution characteristics of subsidence cracks, the subsidence area can be divided into tension zone, compression zone, and neutral zone; the ground cracks are divided into permanent tension cracks and dynamic cracks. (2) The drought stress effect of soil in the subsidence area is significant. Under the influence of soil structure variation, the water-holding capacity of the soil in the subsidence area decreases, and the soil moisture dissipation is strong. The soil moisture transport rate in the aeration zone of the subsidence area is ranked as follows: tension zone > neutral zone > compression zone. (3) Ground cracks can exacerbate the soil moisture transport rate in the aeration zone. After 15 d of crack appearance, the soil moisture transport reaches a relatively stable state, and the soil moisture transport rate in the surface layer of the crack is the fastest, and the loss of soil moisture is the most significant. The crack effect is not significant beyond 100 cm from the crack. This study provides a theoretical and data support for soil and vegetation remediation in mining subsidence areas.

Abstract Image

煤层开采扰动下沉陷区曝气带土壤水分运移特征
高强度煤炭开采引发了一系列生态环境问题,包括地表沉降、地裂缝发育、植被退化等。采矿引起的水循环系统的破坏,如栖息地下水、曝气带地下水和呼吸水,是植被枯萎的根本原因。曝气带是水循环过程中的关键环节,对土壤肥力有重要影响。为探讨采矿扰动下塌陷区土壤水分运移特征,在中国内蒙古典型矿区对塌陷区和地裂缝的面积、形态特征进行了现场监测。随后,构建了典型塌陷区土壤水分运移模型,分析了不同类型塌陷和裂缝影响下的土壤水分运移规律,阐明了土壤侵蚀对通气区土壤水分运移的影响规律。结果表明:(1)根据沉陷裂缝的发生和分布特征,可将沉陷区划分为拉力区、压缩区和中性区;地裂缝分为永久拉力裂缝和动力裂缝。(2)沉陷区土壤干旱应力效应显著。受土壤结构变异的影响,沉陷区土壤持水能力下降,土壤水分散失强烈。沉陷区曝气带土壤水分运移速率排序为:张力带>;中性带>;压缩带。(3)地裂缝会加剧曝气带的土壤水分运移速率。裂缝出现 15 d 后,土壤水分运移达到相对稳定状态,裂缝表层土壤水分运移速率最快,土壤水分损失最显著。在距裂缝 100 cm 以外,裂缝效应不明显。该研究为采矿沉陷区的土壤和植被修复提供了理论和数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信