Amaranadha Reddy Manchuri, Kamakshaiah Charyulu Devarayapalli, Bolam Kim, Youngsu Lim, Dae Sung Lee
{"title":"Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting","authors":"Amaranadha Reddy Manchuri, Kamakshaiah Charyulu Devarayapalli, Bolam Kim, Youngsu Lim, Dae Sung Lee","doi":"10.1016/j.gee.2024.08.006","DOIUrl":null,"url":null,"abstract":"Developing an efficient electrocatalyst for superior electrochemical water splitting (EWS) is crucial for achieving comprehensive hydrogen production. A heterostructured electrocatalyst, free of noble metals, TiC MXene nanosheet-integrated cobalt-doped nickel hydroxide (NHCoMX) composite was synthesized via a hydrothermal method. The abundant pores in the TiC MXene nanosheet (MX)–integrated microarchitecture increased the number of active sites and facilitated charge transfer, thus enhancing electrocatalysis. Specifically, the MX-enhanced charge transfer considerably transformed the microelectronic structure of cobalt-doped Ni(OH) (NHCo), which promoted its hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Hence, as an EWS catalyst, NHCoMX exhibited an exceptional electrocatalytic activity, demonstrating OER and HER overpotentials of 310 mV and 73 mV, respectively, with low Tafel slopes of 65 mV dec and 85 mV dec, respectively; it exhibited a current density of 10 mV cm in 1.0 mol L KOH, representing the closest efficiency to the noble state-of-the-art RuO and Pt/C catalyst. Furthermore, the developed electrocatalyst improved the activities of both HER and OER, leading to an overall EWS current density of 10 mA cm at 1.72 V in an alkaline electrolyte with two electrodes. This study describes an efficient heterostructured NHCoMX composite electrocatalyst. It is significantly comparable to the noble state-of-the-art electrocatalysts and can be extended to fabricate resourceful catalysts for large-scale EWS applications.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.08.006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing an efficient electrocatalyst for superior electrochemical water splitting (EWS) is crucial for achieving comprehensive hydrogen production. A heterostructured electrocatalyst, free of noble metals, TiC MXene nanosheet-integrated cobalt-doped nickel hydroxide (NHCoMX) composite was synthesized via a hydrothermal method. The abundant pores in the TiC MXene nanosheet (MX)–integrated microarchitecture increased the number of active sites and facilitated charge transfer, thus enhancing electrocatalysis. Specifically, the MX-enhanced charge transfer considerably transformed the microelectronic structure of cobalt-doped Ni(OH) (NHCo), which promoted its hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Hence, as an EWS catalyst, NHCoMX exhibited an exceptional electrocatalytic activity, demonstrating OER and HER overpotentials of 310 mV and 73 mV, respectively, with low Tafel slopes of 65 mV dec and 85 mV dec, respectively; it exhibited a current density of 10 mV cm in 1.0 mol L KOH, representing the closest efficiency to the noble state-of-the-art RuO and Pt/C catalyst. Furthermore, the developed electrocatalyst improved the activities of both HER and OER, leading to an overall EWS current density of 10 mA cm at 1.72 V in an alkaline electrolyte with two electrodes. This study describes an efficient heterostructured NHCoMX composite electrocatalyst. It is significantly comparable to the noble state-of-the-art electrocatalysts and can be extended to fabricate resourceful catalysts for large-scale EWS applications.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.