Jianmin Yu, Gongao Peng, Lishan Peng, Qingjun Chen, Chenliang Su, Lu Shang, Tierui Zhang
{"title":"Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis","authors":"Jianmin Yu, Gongao Peng, Lishan Peng, Qingjun Chen, Chenliang Su, Lu Shang, Tierui Zhang","doi":"10.1016/j.gee.2024.08.009","DOIUrl":null,"url":null,"abstract":"Hydrogen evolution reaction (HER) plays a crucial role in developing clean and renewable hydrogen energy technologies. However, conventional HER catalysts rely on expensive and scarce noble metals, which is a significant challenge for practical application. Recently, two-dimensional transition metal dichalcogenides (2D-TMDs) have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER. Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs. This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods. Subsequently, recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized. Finally, the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed. We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.08.009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen evolution reaction (HER) plays a crucial role in developing clean and renewable hydrogen energy technologies. However, conventional HER catalysts rely on expensive and scarce noble metals, which is a significant challenge for practical application. Recently, two-dimensional transition metal dichalcogenides (2D-TMDs) have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER. Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs. This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods. Subsequently, recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized. Finally, the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed. We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.
氢进化反应(HER)在开发清洁和可再生氢能技术方面发挥着至关重要的作用。然而,传统的氢进化反应催化剂依赖于昂贵而稀缺的贵金属,这对实际应用是一个重大挑战。最近,二维过渡金属二钙化物(2D-TMDs)作为具有吸引力和成本效益的替代品出现了,可用于 HER 的高效电催化。人们一直致力于推进二维过渡金属二钙化物的合成和应用。本综述将理论计算与实验方法相结合,重点介绍基于二维-TMDs 的高性能 HER 电催化剂的设计与合成。随后,总结了合成具有增强 HER 活性的不同类型二维 TMDs 的最新进展。最后,讨论了基于二维 TMDs 的 HER 电催化剂的结论和前景。我们希望本综述能为工业应用中基于二维 TMDs 的高效 HER 电催化剂的设计和开发提供新的见解。
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.