Identifying the Nonlinear Impacts of Road Network Topology and Built Environment on the Potential Greenhouse Gas Emission Reduction of Dockless Bike-Sharing Trips: A Case Study of Shenzhen, China
IF 2.8 3区 地球科学Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Identifying the Nonlinear Impacts of Road Network Topology and Built Environment on the Potential Greenhouse Gas Emission Reduction of Dockless Bike-Sharing Trips: A Case Study of Shenzhen, China","authors":"Jiannan Zhao, Changwei Yuan, Xinhua Mao, Ningyuan Ma, Yaxin Duan, Jinrui Zhu, Hujun Wang, Beisi Tian","doi":"10.3390/ijgi13080287","DOIUrl":null,"url":null,"abstract":"Existing studies have limited evidence about the complex nonlinear impact mechanism of road network topology and built environment on bike-sharing systems’ greenhouse gas (GHG) emission reduction benefits. To fill this gap, we examine the nonlinear effects of road network topological attributes and built environment elements on the potential GHG emission reduction of dockless bike-sharing (DBS) trips in Shenzhen, China. Various methods are employed in the research framework of this study, including a GHG emission reduction estimation model, spatial design network analysis (sDNA), gradient boosting decision tree (GBDT), and partial dependence plots (PDPs). Results show that road network topological variables have the leading role in determining the potential GHG emission reduction of DBS trips, followed by land use variables and transit-related variables. Moreover, the nonlinear impacts of road network topological variables and built environment variables show certain threshold intervals for the potential GHG emission reduction of DBS trips. Furthermore, the impact of built environment on the potential GHG emission reduction of DBS trips is moderated by road network topological indicators (closeness and betweenness). Compared with betweenness, closeness has a greater moderating effect on built environment variables. These findings provide empirical evidence for guiding bike-sharing system planning, bike-sharing rebalancing strategy optimization, and low-carbon travel policy formulation.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080287","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing studies have limited evidence about the complex nonlinear impact mechanism of road network topology and built environment on bike-sharing systems’ greenhouse gas (GHG) emission reduction benefits. To fill this gap, we examine the nonlinear effects of road network topological attributes and built environment elements on the potential GHG emission reduction of dockless bike-sharing (DBS) trips in Shenzhen, China. Various methods are employed in the research framework of this study, including a GHG emission reduction estimation model, spatial design network analysis (sDNA), gradient boosting decision tree (GBDT), and partial dependence plots (PDPs). Results show that road network topological variables have the leading role in determining the potential GHG emission reduction of DBS trips, followed by land use variables and transit-related variables. Moreover, the nonlinear impacts of road network topological variables and built environment variables show certain threshold intervals for the potential GHG emission reduction of DBS trips. Furthermore, the impact of built environment on the potential GHG emission reduction of DBS trips is moderated by road network topological indicators (closeness and betweenness). Compared with betweenness, closeness has a greater moderating effect on built environment variables. These findings provide empirical evidence for guiding bike-sharing system planning, bike-sharing rebalancing strategy optimization, and low-carbon travel policy formulation.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.