{"title":"An Efficient Algorithm for Extracting Railway Tracks Based on Spatial-Channel Graph Convolutional Network and Deep Neural Residual Network","authors":"Yanbin Weng, Meng Xu, Xiahu Chen, Cheng Peng, Hui Xiang, Peixin Xie, Hua Yin","doi":"10.3390/ijgi13090309","DOIUrl":null,"url":null,"abstract":"The accurate detection of railway tracks is essential for ensuring the safe operation of railways. This study introduces an innovative algorithm that utilizes a graph convolutional network (GCN) and deep neural residual network to enhance feature extraction from high-resolution aerial imagery. The traditional encoder–decoder architecture is expanded with GCN, which improves neighborhood definitions and enables long-range information exchange in a single layer. As a result, complex track features and contextual information are captured more effectively. The deep neural residual network, which incorporates depthwise separable convolution and an inverted bottleneck design, improves the representation of long-distance positional information and addresses occlusion caused by train carriages. The scSE attention mechanism reduces noise and optimizes feature representation. The algorithm was trained and tested on custom and Massachusetts datasets, demonstrating an 89.79% recall rate. This is a 3.17% improvement over the original U-Net model, indicating excellent performance in railway track segmentation. These findings suggest that the proposed algorithm not only excels in railway track segmentation but also offers significant competitive advantages in performance.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090309","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate detection of railway tracks is essential for ensuring the safe operation of railways. This study introduces an innovative algorithm that utilizes a graph convolutional network (GCN) and deep neural residual network to enhance feature extraction from high-resolution aerial imagery. The traditional encoder–decoder architecture is expanded with GCN, which improves neighborhood definitions and enables long-range information exchange in a single layer. As a result, complex track features and contextual information are captured more effectively. The deep neural residual network, which incorporates depthwise separable convolution and an inverted bottleneck design, improves the representation of long-distance positional information and addresses occlusion caused by train carriages. The scSE attention mechanism reduces noise and optimizes feature representation. The algorithm was trained and tested on custom and Massachusetts datasets, demonstrating an 89.79% recall rate. This is a 3.17% improvement over the original U-Net model, indicating excellent performance in railway track segmentation. These findings suggest that the proposed algorithm not only excels in railway track segmentation but also offers significant competitive advantages in performance.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.