{"title":"Navigating Immovable Assets: A Graph-Based Spatio-Temporal Data Model for Effective Information Management","authors":"Muhammad Syafiq, Suhaibah Azri, Uznir Ujang","doi":"10.3390/ijgi13090313","DOIUrl":null,"url":null,"abstract":"Asset management is a process that deals with numerous types of data, including spatial and temporal data. Such an occurrence is attributed to the proliferation of information sources. However, the lack of a comprehensive asset data model that encompasses the management of both spatial and temporal data remains a challenge. Therefore, this paper proposes a graph-based spatio-temporal data model to integrate spatial and temporal information into asset management. In the spatial layer, we provide a graph-based method that uses topological containment and connectivity relationships to model the interior building space using data from 3D city models. In the temporal layer, we proposed the Aggregated Directly-Follows Multigraph (ADFM), a novel process model based on a directly-follows graph (DFG), to show the chronological flow of events in asset management by taking into consideration the repetitive nature of events in asset management. The integration of both layers allows spatial, temporal, and spatio-temporal queries to be made regarding information about events in asset management. This method offers a more straightforward query, which helps to eliminate duplicate and false query results when assessed and compared with a flattened graph event log. Finally, this paper provides information for the management of 3D spaces using a NoSQL graph database and the management of events and their temporal information through graph modelling.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"55 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090313","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Asset management is a process that deals with numerous types of data, including spatial and temporal data. Such an occurrence is attributed to the proliferation of information sources. However, the lack of a comprehensive asset data model that encompasses the management of both spatial and temporal data remains a challenge. Therefore, this paper proposes a graph-based spatio-temporal data model to integrate spatial and temporal information into asset management. In the spatial layer, we provide a graph-based method that uses topological containment and connectivity relationships to model the interior building space using data from 3D city models. In the temporal layer, we proposed the Aggregated Directly-Follows Multigraph (ADFM), a novel process model based on a directly-follows graph (DFG), to show the chronological flow of events in asset management by taking into consideration the repetitive nature of events in asset management. The integration of both layers allows spatial, temporal, and spatio-temporal queries to be made regarding information about events in asset management. This method offers a more straightforward query, which helps to eliminate duplicate and false query results when assessed and compared with a flattened graph event log. Finally, this paper provides information for the management of 3D spaces using a NoSQL graph database and the management of events and their temporal information through graph modelling.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.