Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lin Wang, Tengxiao Huang, Xiaowei Xu, Nitong Bu, Zhenzhen Wu, Yunpeng Zhao, Ya-Qin Zhou, Su Chen, Yong Chen, Jie Pang
{"title":"Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy","authors":"Lin Wang, Tengxiao Huang, Xiaowei Xu, Nitong Bu, Zhenzhen Wu, Yunpeng Zhao, Ya-Qin Zhou, Su Chen, Yong Chen, Jie Pang","doi":"10.1007/s42765-024-00476-8","DOIUrl":null,"url":null,"abstract":"<p>Excess biological fluids around skin wounds can lead to infections and impede the healing process. Researchers have extensively studied dressings with varying water contents for wound care. However, hydrophilic and hydrophobic-hydrophilic dressings often face challenges such as slow fluid transfer and excessive retention. This study introduces an innovative approach involving the use of superhydrophobic–hydrophobic–hydrophilic dual-gradient electrospun nanofibers to form a 3D biomimetic nanofiber scaffold (3D BNSF). The 3D BNSF is composed of hydrophobic polycaprolactone and thermoplastic polyurethane, along with antibacterial, superhydrophobic nano-chitin particles. In vitro and in vivo experiments have demonstrated that this scaffold exhibits excellent antibacterial properties and compatibility with cells, facilitating complete wound healing and regeneration. This study offers a new perspective on the targeted acceleration of wound healing, with the potential to become an alternative strategy for clinical applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00476-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Excess biological fluids around skin wounds can lead to infections and impede the healing process. Researchers have extensively studied dressings with varying water contents for wound care. However, hydrophilic and hydrophobic-hydrophilic dressings often face challenges such as slow fluid transfer and excessive retention. This study introduces an innovative approach involving the use of superhydrophobic–hydrophobic–hydrophilic dual-gradient electrospun nanofibers to form a 3D biomimetic nanofiber scaffold (3D BNSF). The 3D BNSF is composed of hydrophobic polycaprolactone and thermoplastic polyurethane, along with antibacterial, superhydrophobic nano-chitin particles. In vitro and in vivo experiments have demonstrated that this scaffold exhibits excellent antibacterial properties and compatibility with cells, facilitating complete wound healing and regeneration. This study offers a new perspective on the targeted acceleration of wound healing, with the potential to become an alternative strategy for clinical applications.

Graphical Abstract

Abstract Image

通过电纺丝-反应策略在伤口敷料中添加纳米甲壳素颗粒的强效双等分梯度抗菌人工皮肤
皮肤伤口周围过多的生物液体会导致感染,阻碍伤口愈合。研究人员对不同含水量的伤口护理敷料进行了广泛研究。然而,亲水性和疏水性-亲水性敷料经常面临液体传输缓慢和过度滞留等挑战。本研究介绍了一种创新方法,即使用超疏水-疏水-亲水双梯度电纺纳米纤维形成三维仿生物纳米纤维支架(3D BNSF)。三维 BNSF 由疏水性聚己内酯和热塑性聚氨酯以及抗菌超疏水性纳米壳质颗粒组成。体外和体内实验证明,这种支架具有优异的抗菌性能和与细胞的相容性,可促进伤口的完全愈合和再生。这项研究为有针对性地加速伤口愈合提供了一个新的视角,有望成为临床应用的另一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信