{"title":"Chapter VIII. The Determining Role of Chain Combustion in Flame Propagation","authors":"V. V. Azatyan","doi":"10.1134/S0023158424601323","DOIUrl":null,"url":null,"abstract":"<p>Until recently, it was attempted to explain the flame propagation without considering the chain nature of combustion, but the contradictions between theory and experiments failed to be explained. The difference in the roles of reaction chains and self-heating was not considered, as well as the role of heterogeneous chain termination. These issues are addressed in this chapter. Greater uncertainty in the quantitative interpretation of gas combustion is due to the limited information on heterogeneous reactions of active particles and the nonstationary state of the surface. Under these limitations, the propagation of flame of the 4H<sub>2</sub> + O<sub>2</sub> mixture was simulated. To reduce the role of the nonstationary state of the surface, conditions for the limiting role of diffusion of H atoms to the walls were chosen. A method for solving differential equations and conditions for replacing the Laplace operator with an averaging rate constant for the chemisorption of atomic hydrogen are described. The flat flame approximation is used. The flame characteristics for their comparison with the results of experiments conducted with the participation of the author were obtained. Experimental results showing the strong dependence of all characteristics of flame propagation on the changing properties of the surface are presented.</p>","PeriodicalId":682,"journal":{"name":"Kinetics and Catalysis","volume":"65 1 supplement","pages":"S80 - S89"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetics and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0023158424601323","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Until recently, it was attempted to explain the flame propagation without considering the chain nature of combustion, but the contradictions between theory and experiments failed to be explained. The difference in the roles of reaction chains and self-heating was not considered, as well as the role of heterogeneous chain termination. These issues are addressed in this chapter. Greater uncertainty in the quantitative interpretation of gas combustion is due to the limited information on heterogeneous reactions of active particles and the nonstationary state of the surface. Under these limitations, the propagation of flame of the 4H2 + O2 mixture was simulated. To reduce the role of the nonstationary state of the surface, conditions for the limiting role of diffusion of H atoms to the walls were chosen. A method for solving differential equations and conditions for replacing the Laplace operator with an averaging rate constant for the chemisorption of atomic hydrogen are described. The flat flame approximation is used. The flame characteristics for their comparison with the results of experiments conducted with the participation of the author were obtained. Experimental results showing the strong dependence of all characteristics of flame propagation on the changing properties of the surface are presented.
期刊介绍:
Kinetics and Catalysis Russian is a periodical that publishes theoretical and experimental works on homogeneous and heterogeneous kinetics and catalysis. Other topics include the mechanism and kinetics of noncatalytic processes in gaseous, liquid, and solid phases, quantum chemical calculations in kinetics and catalysis, methods of studying catalytic processes and catalysts, the chemistry of catalysts and adsorbent surfaces, the structure and physicochemical properties of catalysts, preparation and poisoning of catalysts, macrokinetics, and computer simulations in catalysis. The journal also publishes review articles on contemporary problems in kinetics and catalysis. The journal welcomes manuscripts from all countries in the English or Russian language.