Colored vertex models and Iwahori Whittaker functions

Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson
{"title":"Colored vertex models and Iwahori Whittaker functions","authors":"Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson","doi":"10.1007/s00029-024-00950-6","DOIUrl":null,"url":null,"abstract":"<p>We give a recursive method for computing <i>all</i> values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group <i>G</i> over a nonarchimedean local field <i>F</i>. Structures in the proof have surprising analogies to features of certain solvable lattice models. In the case <span>\\(G=\\textrm{GL}_r\\)</span> we show that there exist solvable lattice models whose partition functions give precisely all of these values. Here ‘solvable’ means that the models have a family of Yang–Baxter equations which imply, among other things, that their partition functions satisfy the same recursions as those for Iwahori or parahoric Whittaker functions. The R-matrices for these Yang–Baxter equations come from a Drinfeld twist of the quantum group <span>\\(U_q(\\widehat{\\mathfrak {gl}}(r|1))\\)</span>, which we then connect to the standard intertwining operators on the unramified principal series. We use our results to connect Iwahori and parahoric Whittaker functions to variations of Macdonald polynomials.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00950-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a recursive method for computing all values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group G over a nonarchimedean local field F. Structures in the proof have surprising analogies to features of certain solvable lattice models. In the case \(G=\textrm{GL}_r\) we show that there exist solvable lattice models whose partition functions give precisely all of these values. Here ‘solvable’ means that the models have a family of Yang–Baxter equations which imply, among other things, that their partition functions satisfy the same recursions as those for Iwahori or parahoric Whittaker functions. The R-matrices for these Yang–Baxter equations come from a Drinfeld twist of the quantum group \(U_q(\widehat{\mathfrak {gl}}(r|1))\), which we then connect to the standard intertwining operators on the unramified principal series. We use our results to connect Iwahori and parahoric Whittaker functions to variations of Macdonald polynomials.

Abstract Image

彩色顶点模型和岩崛惠特克函数
我们给出了一种递归方法,用于计算在非archimedean局部域F上的分裂还原群G的岩崛子群或parahoric子群下不变的非ramified主数列的惠特克函数基础的所有值。在 \(G=\textrm{GL}_r\) 的情况下,我们证明存在可解晶格模型,其划分函数恰好给出了所有这些值。这里的 "可解 "是指这些模型具有杨-巴克斯特方程组,这意味着它们的划分函数满足与岩崛函数或奇异惠特克函数相同的递归。这些杨-巴克斯特方程的 R 矩来自量子群 \(U_q(\widehat\{mathfrak {gl}}(r|1))\) 的德林菲尔德扭转,然后我们把它与未ramified 主数列上的标准交织算子联系起来。我们用我们的结果把岩崛函数和准惠特克函数与麦克唐纳多项式的变化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信