Second-order a priori and a posteriori error estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Shashikant Kumar, Sunil Kumar, Pratibhamoy Das
{"title":"Second-order a priori and a posteriori error estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form","authors":"Shashikant Kumar, Sunil Kumar, Pratibhamoy Das","doi":"10.1007/s11075-024-01918-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present the <i>a priori</i> and <i>a posteriori</i> error analysis of a hybrid difference scheme for integral boundary value problems of nonlinear singularly perturbed parameterized form. The discretization for the nonlinear parameterized equation constitutes a hybrid difference scheme which is based on a suitable combination of the trapezoidal scheme and the backward difference scheme. Further, we employ the composite trapezoidal scheme for the discretization of the nonlocal boundary condition. <i>A priori</i> error estimation is provided for the proposed hybrid scheme, which leads to second-order uniform convergence on various <i>a priori</i> defined meshes. Moreover, a detailed <i>a posteriori</i> error analysis is carried out for the present hybrid scheme which provides a proper discretization of the error equidistribution at each partition. Numerical results strongly validate the theoretical findings for nonlinear problems with integral boundary conditions.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01918-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present the a priori and a posteriori error analysis of a hybrid difference scheme for integral boundary value problems of nonlinear singularly perturbed parameterized form. The discretization for the nonlinear parameterized equation constitutes a hybrid difference scheme which is based on a suitable combination of the trapezoidal scheme and the backward difference scheme. Further, we employ the composite trapezoidal scheme for the discretization of the nonlocal boundary condition. A priori error estimation is provided for the proposed hybrid scheme, which leads to second-order uniform convergence on various a priori defined meshes. Moreover, a detailed a posteriori error analysis is carried out for the present hybrid scheme which provides a proper discretization of the error equidistribution at each partition. Numerical results strongly validate the theoretical findings for nonlinear problems with integral boundary conditions.

Abstract Image

非线性奇异扰动参数化形式积分边界值问题的二阶先验和后验误差估计
在这项工作中,我们介绍了针对非线性奇异扰动参数化形式积分边界值问题的混合差分方案的先验和后验误差分析。非线性参数化方程的离散化由混合差分方案构成,该方案基于梯形方案和后向差分方案的适当组合。此外,我们还采用复合梯形方案对非局部边界条件进行离散化。我们为所提出的混合方案提供了先验误差估计,从而在各种先验定义的网格上实现二阶均匀收敛。此外,还对本混合方案进行了详细的后验误差分析,对每个分区的误差等分布进行了适当的离散化。对于具有积分边界条件的非线性问题,数值结果有力地验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信