{"title":"Unconditionally energy stable IEQ-FEMs for the Cahn-Hilliard equation and Allen-Cahn equation","authors":"Yaoyao Chen, Hailiang Liu, Nianyu Yi, Peimeng Yin","doi":"10.1007/s11075-024-01910-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present several unconditionally energy-stable invariant energy quadratization (IEQ) finite element methods (FEMs) with linear, first- and second-order accuracy for solving both the Cahn-Hilliard equation and the Allen-Cahn equation. For time discretization, we compare three distinct IEQ-FEM schemes that position the intermediate function introduced by the IEQ approach in different function spaces: finite element space, continuous function space, or a combination of these spaces. Rigorous proofs establishing the existence and uniqueness of the numerical solution, along with analyses of energy dissipation for both equations and mass conservation for the Cahn-Hilliard equation, are provided. The proposed schemes’ accuracy, efficiency, and solution properties are demonstrated through numerical experiments.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"399 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01910-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present several unconditionally energy-stable invariant energy quadratization (IEQ) finite element methods (FEMs) with linear, first- and second-order accuracy for solving both the Cahn-Hilliard equation and the Allen-Cahn equation. For time discretization, we compare three distinct IEQ-FEM schemes that position the intermediate function introduced by the IEQ approach in different function spaces: finite element space, continuous function space, or a combination of these spaces. Rigorous proofs establishing the existence and uniqueness of the numerical solution, along with analyses of energy dissipation for both equations and mass conservation for the Cahn-Hilliard equation, are provided. The proposed schemes’ accuracy, efficiency, and solution properties are demonstrated through numerical experiments.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.