A trust-region framework for iteration solution of the direct INDSCAL problem in metric multidimensional scaling

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue-lin Zhou, Chao-qian Li
{"title":"A trust-region framework for iteration solution of the direct INDSCAL problem in metric multidimensional scaling","authors":"Xue-lin Zhou, Chao-qian Li","doi":"10.1007/s11075-024-01921-w","DOIUrl":null,"url":null,"abstract":"<p>The well-known INdividual Differences SCALing (INDSCAL) model is intended for the simultaneous metric multidimensional scaling (MDS) of several doubly centered matrices of squared dissimilarities. An alternative approach, called for short DINDSCAL (direct INDSCAL), is proposed for analyzing directly the input matrices of squared dissimilarities. In the present work, the problem of fitting the DINDSCAL model to the data is formulated as a Riemannian optimization problem on a product matrix manifold comprised of the Stiefel sub-manifold of zero-sum matrices and non-negative diagonal matrices. A practical algorithm, based on the generic Riemannian trust-region method by Absil et al., is presented to address the underlying problem, which is characterized by global convergence and local superlinear convergence rate. Numerical experiments are conducted to illustrate the efficiency of the proposed method. Furthermore, comparisons with the existing projected gradient approach and some classical methods in the MATLAB toolbox Manopt are also provided to demonstrate the merits of the proposed approach.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01921-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The well-known INdividual Differences SCALing (INDSCAL) model is intended for the simultaneous metric multidimensional scaling (MDS) of several doubly centered matrices of squared dissimilarities. An alternative approach, called for short DINDSCAL (direct INDSCAL), is proposed for analyzing directly the input matrices of squared dissimilarities. In the present work, the problem of fitting the DINDSCAL model to the data is formulated as a Riemannian optimization problem on a product matrix manifold comprised of the Stiefel sub-manifold of zero-sum matrices and non-negative diagonal matrices. A practical algorithm, based on the generic Riemannian trust-region method by Absil et al., is presented to address the underlying problem, which is characterized by global convergence and local superlinear convergence rate. Numerical experiments are conducted to illustrate the efficiency of the proposed method. Furthermore, comparisons with the existing projected gradient approach and some classical methods in the MATLAB toolbox Manopt are also provided to demonstrate the merits of the proposed approach.

Abstract Image

度量多维标度中直接 INDSCAL 问题迭代求解的信任区域框架
众所周知的 INdividual Differences SCALing(INDSCAL)模型用于同时对多个双中心异同平方矩阵进行度量多维标度(MDS)。我们提出了另一种方法,简称为 DINDSCAL(直接 INDSCAL),用于直接分析输入的差异平方矩阵。在本研究中,DINDSCAL 模型与数据的拟合问题被表述为一个乘积矩阵流形上的黎曼优化问题,乘积矩阵流形由零和矩阵和非负对角矩阵的 Stiefel 子流形组成。在 Absil 等人提出的通用黎曼信任区域法基础上,提出了一种实用算法来解决基本问题,该算法具有全局收敛性和局部超线性收敛率的特点。通过数值实验说明了所提方法的效率。此外,还与现有的投影梯度法和 MATLAB 工具箱 Manopt 中的一些经典方法进行了比较,以证明所提方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信