Numerical algorithms for recovering a fractional Sturm-Liouville operator based on trace formulae

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Xiaowen Li, Xiaoying Jiang, Xiang Xu
{"title":"Numerical algorithms for recovering a fractional Sturm-Liouville operator based on trace formulae","authors":"Xiaowen Li, Xiaoying Jiang, Xiang Xu","doi":"10.1007/s11075-024-01926-5","DOIUrl":null,"url":null,"abstract":"<p>This paper explores numerical methods for recovering a density term in a fractional Sturm-Liouville problem using a set of spectra. By applying Lidskii’s theorem, a sequence of trace formulae are derived to elucidate the connections between the unknown coefficients and the complex eigenvalues of a fractional spectra problem. Two efficient algorithms are proposed based on these trace formulae, and their effectiveness is demonstrated through numerical experiments.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01926-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores numerical methods for recovering a density term in a fractional Sturm-Liouville problem using a set of spectra. By applying Lidskii’s theorem, a sequence of trace formulae are derived to elucidate the connections between the unknown coefficients and the complex eigenvalues of a fractional spectra problem. Two efficient algorithms are proposed based on these trace formulae, and their effectiveness is demonstrated through numerical experiments.

Abstract Image

基于迹公式的分数斯特姆-利乌维尔算子恢复数值算法
本文探讨了利用一组谱恢复分数 Sturm-Liouville 问题中的密度项的数值方法。通过应用 Lidskii 定理,推导出一系列迹公式,以阐明未知系数与分数谱问题复特征值之间的联系。根据这些迹公式提出了两种高效算法,并通过数值实验证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信