Globally maximizing the ratio of two generalized quadratic matrix form functions over the Stiefel manifold

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Longfei Wang, Yu Chen, Hongwei Jiao, Yunhai Xiao, Meijia Yang
{"title":"Globally maximizing the ratio of two generalized quadratic matrix form functions over the Stiefel manifold","authors":"Longfei Wang, Yu Chen, Hongwei Jiao, Yunhai Xiao, Meijia Yang","doi":"10.1007/s11075-024-01939-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of maximizing the ratio of two generalized quadratic matrix form functions over the Stiefel manifold, i.e., <span>\\(\\max \\limits _{X^{T}X=I} \\frac{\\text {tr}(GX^{T}AX)}{\\text {tr}(GX^{T}BX)}\\)</span> (RQMP). We utilize the Dinkelbach algorithm to globally solve RQMP, where each subproblem is evaluated by the closed-form solution. For a special case of RQMP with <span>\\(AB=BA\\)</span>, we propose an equivalent linear programming problem. Numerical experiments demonstrate that it is more efficient than the recent SDP-based algorithm.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"47 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01939-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of maximizing the ratio of two generalized quadratic matrix form functions over the Stiefel manifold, i.e., \(\max \limits _{X^{T}X=I} \frac{\text {tr}(GX^{T}AX)}{\text {tr}(GX^{T}BX)}\) (RQMP). We utilize the Dinkelbach algorithm to globally solve RQMP, where each subproblem is evaluated by the closed-form solution. For a special case of RQMP with \(AB=BA\), we propose an equivalent linear programming problem. Numerical experiments demonstrate that it is more efficient than the recent SDP-based algorithm.

Abstract Image

在 Stiefel 流形上最大化两个广义二次矩阵形式函数之比的全局性研究
我们考虑的问题是最大化斯蒂费尔流形上两个广义二次矩阵形式函数的比值,即(\max \limits _{X^{T}X=I}\(RQMP).我们利用 Dinkelbach 算法对 RQMP 进行全局求解,其中每个子问题都由闭式解进行评估。对于 RQMP 的一个特例(AB=BA/),我们提出了一个等效的线性规划问题。数值实验证明,它比最近基于 SDP 的算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信