{"title":"An inexact regularized proximal Newton method without line search","authors":"Simeon vom Dahl, Christian Kanzow","doi":"10.1007/s10589-024-00600-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function <i>f</i> and a convex (possibly non-smooth and extended-valued) function <span>\\(\\varphi \\)</span>. Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for <span>\\( \\nabla f \\)</span>, which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00600-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function f and a convex (possibly non-smooth and extended-valued) function \(\varphi \). Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for \( \nabla f \), which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.