{"title":"Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations","authors":"N. Vater, A. Borzì","doi":"10.1007/s10589-024-00606-3","DOIUrl":null,"url":null,"abstract":"<p>The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00606-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.