{"title":"Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations","authors":"N. Vater, A. Borzì","doi":"10.1007/s10589-024-00606-3","DOIUrl":null,"url":null,"abstract":"<p>The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00606-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.