Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N. Vater, A. Borzì
{"title":"Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations","authors":"N. Vater, A. Borzì","doi":"10.1007/s10589-024-00606-3","DOIUrl":null,"url":null,"abstract":"<p>The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00606-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.

Abstract Image

求解非线性欠定方程组的准牛顿法的收敛性
研究了求解非线性欠定方程系统的准牛顿方法的开发和收敛分析。这些方程出现在许多应用领域,例如大型过参数化神经网络的监督学习,这就需要开发具有收敛性保证的高效方法。本文提出了一种计算来自布洛伊登更新的近似雅各布逆的摩尔-彭罗斯逆的新方法,并证明了阻尼准牛顿方法的半局部收敛结果。理论结果详细说明了多维二次方程组的情况,并在特征值问题和过参数化神经网络的监督学习中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信