Inference of cosmological models with principal component analysis

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
RANBIR SHARMA, H. K. JASSAL
{"title":"Inference of cosmological models with principal component analysis","authors":"RANBIR SHARMA,&nbsp;H. K. JASSAL","doi":"10.1007/s12036-024-10009-9","DOIUrl":null,"url":null,"abstract":"<div><p>Determination of cosmological parameters is a major goal in cosmology at present. The availability of improved data sets necessitates the development of novel statistical tools to interpret the inference from a cosmological model. In this paper, we combine the principal component analysis (PCA) and Markov Chain Monte Carlo (MCMC) method to infer the parameters of cosmological models. We use the No U-Turn Sampler (NUTS) to run the MCMC chains in the model parameter space. After determining the observable by PCA, we replace the observational and error parts of the likelihood analysis with the PCA reconstructed observable and find the most preferred model parameter set. To demonstrate our methodology, we assume a polynomial expansion as the parametrization of the dark energy equation of state and plug it into the reconstruction algorithm as our model. After testing our methodology with simulated data, we apply the same to the observed data sets, the Hubble parameter data, Supernova Type Ia data, and the Baryon acoustic oscillation data. This method effectively constrains cosmological parameters from data, including sparse data sets.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-024-10009-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Determination of cosmological parameters is a major goal in cosmology at present. The availability of improved data sets necessitates the development of novel statistical tools to interpret the inference from a cosmological model. In this paper, we combine the principal component analysis (PCA) and Markov Chain Monte Carlo (MCMC) method to infer the parameters of cosmological models. We use the No U-Turn Sampler (NUTS) to run the MCMC chains in the model parameter space. After determining the observable by PCA, we replace the observational and error parts of the likelihood analysis with the PCA reconstructed observable and find the most preferred model parameter set. To demonstrate our methodology, we assume a polynomial expansion as the parametrization of the dark energy equation of state and plug it into the reconstruction algorithm as our model. After testing our methodology with simulated data, we apply the same to the observed data sets, the Hubble parameter data, Supernova Type Ia data, and the Baryon acoustic oscillation data. This method effectively constrains cosmological parameters from data, including sparse data sets.

Abstract Image

用主成分分析推断宇宙学模型
确定宇宙学参数是当前宇宙学的一个主要目标。随着数据集的改进,有必要开发新的统计工具来解释宇宙学模型的推断。在本文中,我们结合了主成分分析(PCA)和马尔可夫链蒙特卡罗(MCMC)方法来推断宇宙学模型的参数。我们使用无 U-Turn 采样器(NUTS)在模型参数空间运行 MCMC 链。通过 PCA 确定观测值后,我们用 PCA 重建的观测值替换似然分析中的观测值和误差部分,并找出最理想的模型参数集。为了演示我们的方法,我们假设多项式展开作为暗能量状态方程的参数化,并将其作为我们的模型插入重构算法中。在用模拟数据测试了我们的方法之后,我们将同样的方法应用于观测数据集、哈勃参数数据、Ia 型超新星数据和重子声振荡数据。这种方法可以有效地约束数据中的宇宙学参数,包括稀疏的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Astrophysics and Astronomy
Journal of Astrophysics and Astronomy 地学天文-天文与天体物理
CiteScore
1.80
自引率
9.10%
发文量
84
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published. Articles submitted as letters will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信