Aoming Ge, Ziying Pan, Zhengyang Liu, Haocheng Yang, Yiliang Lv and Tao Peng
{"title":"Shock dynamics model based on the conductor hardening and thermal softening effects for single-turn coil","authors":"Aoming Ge, Ziying Pan, Zhengyang Liu, Haocheng Yang, Yiliang Lv and Tao Peng","doi":"10.1088/1402-4896/ad7548","DOIUrl":null,"url":null,"abstract":"Single-turn coil (STC) is a destructive pulse magnet aiming at 100–300 T ultra-high magnetic field. In this study, a conductor shock dynamics model based on the hardening and thermal softening effects is proposed for STCs. Using this model, the changes in mechanical parameters of the conductor during discharge are investigated. The results show that the yield strength and bulk modulus of the conductors are significantly strengthened during discharge. Moreover, without considering hardening in the simulations, the deformation velocities and displacements of the conductors are higher than when hardening is considered, causing the magnetic fields obtained from the simulation to be smaller than the actual values. The model is validated by checking the consistency of the magnetic flux density at the central axis of the STCs, and the conductor deformation degrees of the simulation results, and the experimental data.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"80 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad7548","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-turn coil (STC) is a destructive pulse magnet aiming at 100–300 T ultra-high magnetic field. In this study, a conductor shock dynamics model based on the hardening and thermal softening effects is proposed for STCs. Using this model, the changes in mechanical parameters of the conductor during discharge are investigated. The results show that the yield strength and bulk modulus of the conductors are significantly strengthened during discharge. Moreover, without considering hardening in the simulations, the deformation velocities and displacements of the conductors are higher than when hardening is considered, causing the magnetic fields obtained from the simulation to be smaller than the actual values. The model is validated by checking the consistency of the magnetic flux density at the central axis of the STCs, and the conductor deformation degrees of the simulation results, and the experimental data.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.