Douglas Vitório, Ellen Souza, Lucas Martins, Nádia F. F. da Silva, André Carlos Ponce de Leon de Carvalho, Adriano L. I. Oliveira, Francisco Edmundo de Andrade
{"title":"Building a relevance feedback corpus for legal information retrieval in the real-case scenario of the Brazilian Chamber of Deputies","authors":"Douglas Vitório, Ellen Souza, Lucas Martins, Nádia F. F. da Silva, André Carlos Ponce de Leon de Carvalho, Adriano L. I. Oliveira, Francisco Edmundo de Andrade","doi":"10.1007/s10579-024-09767-3","DOIUrl":null,"url":null,"abstract":"<p>The proper functioning of judicial and legislative institutions requires the efficient retrieval of legal documents from extensive datasets. Legal Information Retrieval focuses on investigating how to efficiently handle these datasets, enabling the retrieval of pertinent information from them. Relevance Feedback, an important aspect of Information Retrieval systems, utilizes the relevance information provided by the user to enhance document retrieval for a specific request. However, there is a lack of available corpora containing this information, particularly for the legislative scenario. Thus, this paper presents Ulysses-RFCorpus, a Relevance Feedback corpus for legislative information retrieval, built in the real-case scenario of the Brazilian Chamber of Deputies. To the best of our knowledge, this corpus is the first publicly available of its kind for the Brazilian Portuguese language. It is also the only corpus that contains feedback information for legislative documents, as the other corpora found in the literature primarily focus on judicial texts. We also used the corpus to evaluate the performance of the Brazilian Chamber of Deputies’ Information Retrieval system. Thereby, we highlighted the model’s strong performance and emphasized the dataset’s significance in the field of Legal Information Retrieval.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-024-09767-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The proper functioning of judicial and legislative institutions requires the efficient retrieval of legal documents from extensive datasets. Legal Information Retrieval focuses on investigating how to efficiently handle these datasets, enabling the retrieval of pertinent information from them. Relevance Feedback, an important aspect of Information Retrieval systems, utilizes the relevance information provided by the user to enhance document retrieval for a specific request. However, there is a lack of available corpora containing this information, particularly for the legislative scenario. Thus, this paper presents Ulysses-RFCorpus, a Relevance Feedback corpus for legislative information retrieval, built in the real-case scenario of the Brazilian Chamber of Deputies. To the best of our knowledge, this corpus is the first publicly available of its kind for the Brazilian Portuguese language. It is also the only corpus that contains feedback information for legislative documents, as the other corpora found in the literature primarily focus on judicial texts. We also used the corpus to evaluate the performance of the Brazilian Chamber of Deputies’ Information Retrieval system. Thereby, we highlighted the model’s strong performance and emphasized the dataset’s significance in the field of Legal Information Retrieval.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.