Perspectivist approaches to natural language processing: a survey

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Simona Frenda, Gavin Abercrombie, Valerio Basile, Alessandro Pedrani, Raffaella Panizzon, Alessandra Teresa Cignarella, Cristina Marco, Davide Bernardi
{"title":"Perspectivist approaches to natural language processing: a survey","authors":"Simona Frenda, Gavin Abercrombie, Valerio Basile, Alessandro Pedrani, Raffaella Panizzon, Alessandra Teresa Cignarella, Cristina Marco, Davide Bernardi","doi":"10.1007/s10579-024-09766-4","DOIUrl":null,"url":null,"abstract":"<p>In Artificial Intelligence research, <i>perspectivism</i> is an approach to machine learning that aims at leveraging data annotated by different individuals in order to model varied perspectives that influence their opinions and world view. We present the first survey of datasets and methods relevant to perspectivism in Natural Language Processing (NLP). We review datasets in which individual annotator labels are preserved, as well as research papers focused on analysing and modelling human perspectives for NLP tasks. Our analysis is based on targeted questions that aim to surface how different perspectives are taken into account, what the novelties and advantages of perspectivist approaches/methods are, and the limitations of these works. Most of the included works have a perspectivist goal, even if some of them do not explicitly discuss perspectivism. A sizeable portion of these works are focused on highly subjective phenomena in natural language where humans show divergent understandings and interpretations, for example in the annotation of toxic and otherwise undesirable language. However, in seemingly objective tasks too, human raters often show systematic disagreement. Through the framework of perspectivism we summarize the solutions proposed to extract and model different points of view, and how to evaluate and explain perspectivist models. Finally, we list the key concepts that emerge from the analysis of the sources and several important observations on the impact of perspectivist approaches on future research in NLP.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"76 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-024-09766-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In Artificial Intelligence research, perspectivism is an approach to machine learning that aims at leveraging data annotated by different individuals in order to model varied perspectives that influence their opinions and world view. We present the first survey of datasets and methods relevant to perspectivism in Natural Language Processing (NLP). We review datasets in which individual annotator labels are preserved, as well as research papers focused on analysing and modelling human perspectives for NLP tasks. Our analysis is based on targeted questions that aim to surface how different perspectives are taken into account, what the novelties and advantages of perspectivist approaches/methods are, and the limitations of these works. Most of the included works have a perspectivist goal, even if some of them do not explicitly discuss perspectivism. A sizeable portion of these works are focused on highly subjective phenomena in natural language where humans show divergent understandings and interpretations, for example in the annotation of toxic and otherwise undesirable language. However, in seemingly objective tasks too, human raters often show systematic disagreement. Through the framework of perspectivism we summarize the solutions proposed to extract and model different points of view, and how to evaluate and explain perspectivist models. Finally, we list the key concepts that emerge from the analysis of the sources and several important observations on the impact of perspectivist approaches on future research in NLP.

自然语言处理的透视法:调查
在人工智能研究中,"视角主义 "是一种机器学习方法,旨在利用由不同个体标注的数据,对影响其观点和世界观的不同视角进行建模。我们首次对自然语言处理(NLP)中与视角主义相关的数据集和方法进行了调查。我们回顾了保留注释者个人标签的数据集,以及专注于为 NLP 任务分析和建模人类视角的研究论文。我们的分析基于有针对性的问题,这些问题旨在揭示如何考虑不同的视角、视角主义方法的新颖性和优势以及这些研究的局限性。所收录的大部分作品都以视角主义为目标,即使其中一些作品并未明确讨论视角主义。这些作品中有相当一部分关注自然语言中的高度主观现象,在这些现象中,人类表现出不同的理解和解释,例如对有毒语言和其他不良语言的注释。然而,在看似客观的任务中,人类评判者也经常表现出系统性的分歧。通过视角主义框架,我们总结了为提取和模拟不同观点而提出的解决方案,以及如何评估和解释视角主义模型。最后,我们列出了从资料分析中得出的关键概念,以及关于视角主义方法对未来 NLP 研究影响的一些重要观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Language Resources and Evaluation
Language Resources and Evaluation 工程技术-计算机:跨学科应用
CiteScore
6.50
自引率
3.70%
发文量
55
审稿时长
>12 weeks
期刊介绍: Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications. Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use. Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信