Comprehensive energy system planning with a focus on electric-thermal load correlations

Chonglei Ding, Xiaoming Zhang, Guangzhe Liang, Jiaoyang Feng
{"title":"Comprehensive energy system planning with a focus on electric-thermal load correlations","authors":"Chonglei Ding, Xiaoming Zhang, Guangzhe Liang, Jiaoyang Feng","doi":"10.1088/1742-6596/2838/1/012027","DOIUrl":null,"url":null,"abstract":"Deepening research on electrothermal integrated energy systems has heightened the coupling between electric power and thermal systems. Accurate electrothermal load scenario modeling and thorough consideration of their interdependencies are crucial for effective planning and scheduling. The traditional method of generating scenarios cannot fully reflect the full complexity of the original power load. To address this, our paper introduces an enhanced clustering approach. Employing the Frank-Copula function to express the correlation between electric and thermal loads, we optimize the clustering and scene reduction sequence, yielding correlated typical electric and thermal load datasets. These refined load profiles serve as the foundation for comprehensive planning and analysis of the integrated energy system.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deepening research on electrothermal integrated energy systems has heightened the coupling between electric power and thermal systems. Accurate electrothermal load scenario modeling and thorough consideration of their interdependencies are crucial for effective planning and scheduling. The traditional method of generating scenarios cannot fully reflect the full complexity of the original power load. To address this, our paper introduces an enhanced clustering approach. Employing the Frank-Copula function to express the correlation between electric and thermal loads, we optimize the clustering and scene reduction sequence, yielding correlated typical electric and thermal load datasets. These refined load profiles serve as the foundation for comprehensive planning and analysis of the integrated energy system.
全面的能源系统规划,重点关注电力与热负荷的相关性
电热综合能源系统研究的不断深入,提高了电力和热力系统之间的耦合度。准确的电热负荷情景建模和全面考虑它们之间的相互依存关系对于有效的规划和调度至关重要。传统的情景生成方法无法充分反映原始电力负荷的全部复杂性。为此,我们的论文引入了一种增强聚类方法。我们采用 Frank-Copula 函数来表达电力负荷和热负荷之间的相关性,优化聚类和场景缩减序列,生成相关的典型电力负荷和热负荷数据集。这些细化的负荷曲线为综合能源系统的全面规划和分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信