{"title":"Efficient Co-ZrO2 electrocatalyst achieves high-performance solid-state lithium-sulfur batteries","authors":"Yanyan Ma, Jianhua Yan","doi":"10.1088/1742-6596/2838/1/012030","DOIUrl":null,"url":null,"abstract":"Li-S batteries are recognized as a promising secondary battery system because of their high energy density, low cost, and environmental friendliness. However, the development of Li-S batteries is mainly limited by issues such as electrode volume expansion, lithium polysulfide (LiPSs) shuttle, and slow redox reaction kinetics of sulfur. Here, a kind of solid-state Li-S battery with in situ solidified solid-state electrolytes (SSEs) is reported, which dramatically reduces the electrode/electrolyte interfacial impedance. In addition, electrospinning is used to fabricate a macroporous carbon nanofibers film (MP-CNFs) loaded with dispersed Co-ZrO<sub>2</sub> nanodot electrocatalyst as the cathode host. The in-situ gel electrolyte can be easily infiltrated into the porous carbon nanofibers and contact the Co-ZrO<sub>2</sub> catalyst, thus fully exerting its catalytic and conversion effects on LiPSs. The results indicate that solid-state Li-S batteries exhibit a high initial capacity of 795.5 mA h·g<sup>−1</sup> and a capacity retention rate of ∼100% after 200 cycles at 1 C.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Li-S batteries are recognized as a promising secondary battery system because of their high energy density, low cost, and environmental friendliness. However, the development of Li-S batteries is mainly limited by issues such as electrode volume expansion, lithium polysulfide (LiPSs) shuttle, and slow redox reaction kinetics of sulfur. Here, a kind of solid-state Li-S battery with in situ solidified solid-state electrolytes (SSEs) is reported, which dramatically reduces the electrode/electrolyte interfacial impedance. In addition, electrospinning is used to fabricate a macroporous carbon nanofibers film (MP-CNFs) loaded with dispersed Co-ZrO2 nanodot electrocatalyst as the cathode host. The in-situ gel electrolyte can be easily infiltrated into the porous carbon nanofibers and contact the Co-ZrO2 catalyst, thus fully exerting its catalytic and conversion effects on LiPSs. The results indicate that solid-state Li-S batteries exhibit a high initial capacity of 795.5 mA h·g−1 and a capacity retention rate of ∼100% after 200 cycles at 1 C.