Tianyi Mao, Lei Liang, Caijie Gao, Chuanzhen Bian, Dongmiao Wang, Shujin Zhu and Xiubin Dai
{"title":"Effective and efficient coded aperture cone-beam computed tomography via generative adversarial U-Net","authors":"Tianyi Mao, Lei Liang, Caijie Gao, Chuanzhen Bian, Dongmiao Wang, Shujin Zhu and Xiubin Dai","doi":"10.1088/1402-4896/ad76e6","DOIUrl":null,"url":null,"abstract":"Coded aperture cone-beam computed tomography (CBCT) represents a crucial method for acquiring high-fidelity three-dimensional (3D) tomographic images while reducing radiation exposure. However, projections are non-uniformly and discontinuously sampled with the coded apertures placed in front of the x-ray source, leading to very small reconstruction scale and time-intensive iterations. In this study, an alternative approach to reconstruct coded aperture CBCT based on generative adversarial U-net is proposed to effectively and efficiently reconstruct large scale 3D CBCT images. Our method entails predicting complete and uniform projections from incomplete and non-uniform coded projections, enabling the requirement of continuity for the use of analytical algorithms in 3D image reconstruction. This novel technique effectively mitigates the traditional trade-off between image fidelity and computational complexity inherent in conventional coded aperture CBCT reconstruction methods. Our experimental results, conducted using clinical datasets comprising CBCT images from 102 patients at Nanjing Medical University, demonstrate that high-quality CBCT images with voxel dimensions of 400 × 400 × 400 can be reconstructed within 35 s, even when 95% of projections are blocked, yielding images with PSNR values exceeding 25dB and SSIM values surpassing 0.85.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"81 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad76e6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coded aperture cone-beam computed tomography (CBCT) represents a crucial method for acquiring high-fidelity three-dimensional (3D) tomographic images while reducing radiation exposure. However, projections are non-uniformly and discontinuously sampled with the coded apertures placed in front of the x-ray source, leading to very small reconstruction scale and time-intensive iterations. In this study, an alternative approach to reconstruct coded aperture CBCT based on generative adversarial U-net is proposed to effectively and efficiently reconstruct large scale 3D CBCT images. Our method entails predicting complete and uniform projections from incomplete and non-uniform coded projections, enabling the requirement of continuity for the use of analytical algorithms in 3D image reconstruction. This novel technique effectively mitigates the traditional trade-off between image fidelity and computational complexity inherent in conventional coded aperture CBCT reconstruction methods. Our experimental results, conducted using clinical datasets comprising CBCT images from 102 patients at Nanjing Medical University, demonstrate that high-quality CBCT images with voxel dimensions of 400 × 400 × 400 can be reconstructed within 35 s, even when 95% of projections are blocked, yielding images with PSNR values exceeding 25dB and SSIM values surpassing 0.85.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.