Lorentz violation with an invariant minimum speed as foundation of the uncertainty principle in Minkowski, dS and AdS spaces

Cláudio Nassif Cruz
{"title":"Lorentz violation with an invariant minimum speed as foundation of the uncertainty principle in Minkowski, dS and AdS spaces","authors":"Cláudio Nassif Cruz","doi":"arxiv-2409.04925","DOIUrl":null,"url":null,"abstract":"This research aims to provide the geometrical foundation of the uncertainty\nprinciple within a new causal structure of spacetime so-called Symmetrical\nSpecial Relativity (SSR), where there emerges a Lorentz violation due to the\npresence of an invariant minimum speed $V$ related to the vacuum energy. SSR\npredicts that a dS-scenario occurs only for a certain regime of speeds $v$,\nwhere $v<v_0=\\sqrt{cV}$, which represents the negative gravitational potentials\n($\\Phi<0$) connected to the cosmological parameter $\\Lambda>0$. For $v=v_0$,\nMinkowski (pseudo-Euclidian) space is recovered for representing the flat space\n($\\Lambda=0$), and for $v>v_0$ ($\\Phi>0$), Anti-de Sitter (AdS) scenario\nprevails ($\\Lambda<0$). The fact that the current universe is flat as its\naverage density of matter distribution ($\\rho_m$ given for a slightly negative\ncurvature $R$) coincides with its vacuum energy density ($\\rho_{\\Lambda}$ given\nfor a slightly positive curvature $\\Lambda$), i.e., the {\\it cosmic coincidence\nproblem}, is now addressed by SSR. SSR provides its energy-momentum tensor of\nperfect fluid, leading to the EOS of vacuum ($p=-\\rho_{\\Lambda}$). Einstein\nequation for vacuum given by such SSR approach allows us to obtain\n$\\rho_{\\Lambda}$ associated with a scalar curvature $\\Lambda$, whereas the\nsolution of Einstein equation only in the presence of a homogeneous\ndistribution of matter $\\rho_m$ for the whole universe presents a scalar\ncurvature $R$, in such a way that the presence of the background field\n$\\Lambda$ opposes the Riemannian curvature $R$, thus leading to a current\neffective curvature $R_{eff}=R+\\Lambda\\approx 0$ according to observations.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to provide the geometrical foundation of the uncertainty principle within a new causal structure of spacetime so-called Symmetrical Special Relativity (SSR), where there emerges a Lorentz violation due to the presence of an invariant minimum speed $V$ related to the vacuum energy. SSR predicts that a dS-scenario occurs only for a certain regime of speeds $v$, where $v0$. For $v=v_0$, Minkowski (pseudo-Euclidian) space is recovered for representing the flat space ($\Lambda=0$), and for $v>v_0$ ($\Phi>0$), Anti-de Sitter (AdS) scenario prevails ($\Lambda<0$). The fact that the current universe is flat as its average density of matter distribution ($\rho_m$ given for a slightly negative curvature $R$) coincides with its vacuum energy density ($\rho_{\Lambda}$ given for a slightly positive curvature $\Lambda$), i.e., the {\it cosmic coincidence problem}, is now addressed by SSR. SSR provides its energy-momentum tensor of perfect fluid, leading to the EOS of vacuum ($p=-\rho_{\Lambda}$). Einstein equation for vacuum given by such SSR approach allows us to obtain $\rho_{\Lambda}$ associated with a scalar curvature $\Lambda$, whereas the solution of Einstein equation only in the presence of a homogeneous distribution of matter $\rho_m$ for the whole universe presents a scalar curvature $R$, in such a way that the presence of the background field $\Lambda$ opposes the Riemannian curvature $R$, thus leading to a current effective curvature $R_{eff}=R+\Lambda\approx 0$ according to observations.
作为闵科夫斯基空间、dS 空间和 AdS 空间不确定性原理基础的具有最小速度不变性的洛伦兹违反现象
这项研究的目的是在一种新的时空因果结构(即所谓的对称狭义相对论(SSR))中为不确定性原理提供几何基础,在这种结构中,由于存在与真空能量相关的不变最小速度 $V$,所以出现了洛伦兹违反现象。SSR预言只有在速度$v$(其中$v0$为0)的特定情况下才会出现dS情景。对于 $v=v_0$,闵科夫斯基(伪欧几里得)空间被恢复为代表平坦空间($\Lambda=0$),而对于 $v>v_0$ ($\Phi>0$),反德西特(AdS)情景占上风($\Lambda<0$)。目前的宇宙是平坦的,因为其物质分布的平均密度(在曲率略为负值$R$的情况下为$\rho_m$)与其真空能量密度(在曲率略为正值$\Lambda的情况下为$\rho_{\Lambda}$)相吻合,即{it cosmic coincidenceproblem},现在由SSR来解决。SSR提供了完美流体的能量-动量张量,从而得出了真空的EOS($p=-\rho_{\Lambda}$)。通过这种 SSR 方法给出的真空爱因斯坦方程,我们可以得到与标量曲率 $\Lambda$ 相关的 $\rrh_{/\Lambda}$,而只有在整个宇宙的物质均匀分布情况下,爱因斯坦方程的解才会呈现标量曲率 $R$、在这种情况下,背景场$\Lambda$的存在与黎曼曲率$R$相反,从而根据观测结果导致当前的有效曲率$R_{eff}=R+\Lambda\approx 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信