{"title":"Higher holonomy for curved L${}_\\infty$-algebras 1: simplicial methods","authors":"Ezra GetzlerNorthwestern University","doi":"arxiv-2408.11157","DOIUrl":null,"url":null,"abstract":"We construct a natural morphism $\\rho$ from the nerve $\\text{MC}_\\bullet(L) =\n\\text{MC}(\\Omega_\\bullet \\widehat{\\otimes} L)$ of a pronilpotent curved\nL${}_\\infty$-algebra $L$ to the simplicial subset $\\gamma_\\bullet(L) =\n\\text{MC}(\\Omega_\\bullet \\widehat{\\otimes} L,s_\\bullet)$ of Maurer--Cartan\nelement satisfying the Dupont gauge condition. This morphism equals the\nidentity on the image of the inclusion $\\gamma_\\bullet(L) \\hookrightarrow\n\\text{MC}_\\bullet(L)$. The proof uses the extension of Berglund's homotopical\nperturbation theory for L${}_\\infty$-algebras to curved L${}_\\infty$-algebras.\nThe morphism $\\rho$ equals the holonomy for nilpotent Lie algebras. In a sequel\nto this paper, we use a cubical analogue $\\rho^\\square$ of $\\rho$ to identify\n$\\rho$ with higher holonomy for semiabelian curved \\Linf-algebras.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a natural morphism $\rho$ from the nerve $\text{MC}_\bullet(L) =
\text{MC}(\Omega_\bullet \widehat{\otimes} L)$ of a pronilpotent curved
L${}_\infty$-algebra $L$ to the simplicial subset $\gamma_\bullet(L) =
\text{MC}(\Omega_\bullet \widehat{\otimes} L,s_\bullet)$ of Maurer--Cartan
element satisfying the Dupont gauge condition. This morphism equals the
identity on the image of the inclusion $\gamma_\bullet(L) \hookrightarrow
\text{MC}_\bullet(L)$. The proof uses the extension of Berglund's homotopical
perturbation theory for L${}_\infty$-algebras to curved L${}_\infty$-algebras.
The morphism $\rho$ equals the holonomy for nilpotent Lie algebras. In a sequel
to this paper, we use a cubical analogue $\rho^\square$ of $\rho$ to identify
$\rho$ with higher holonomy for semiabelian curved \Linf-algebras.