Danel Ahman, Greta Coraglia, Davide Castelnovo, Fosco Loregian, Nelson Martins-Ferreira, Ülo Reimaa
{"title":"Fibrations of algebras","authors":"Danel Ahman, Greta Coraglia, Davide Castelnovo, Fosco Loregian, Nelson Martins-Ferreira, Ülo Reimaa","doi":"arxiv-2408.16581","DOIUrl":null,"url":null,"abstract":"We study fibrations arising from indexed categories of the following form:\nfix two categories $\\mathcal{A},\\mathcal{X}$ and a functor $F : \\mathcal{A}\n\\times \\mathcal{X} \\longrightarrow\\mathcal{X} $, so that to each $F_A=F(A,-)$\none can associate a category of algebras $\\mathbf{Alg}_\\mathcal{X}(F_A)$ (or an\nEilenberg-Moore, or a Kleisli category if each $F_A$ is a monad). We call the\nfunctor $\\int^{\\mathcal{A}}\\mathbf{Alg} \\to \\mathcal{A}$, whose typical fibre\nover $A$ is the category $\\mathbf{Alg}_\\mathcal{X}(F_A)$, the \"fibration of\nalgebras\" obtained from $F$. Examples of such constructions arise in disparate areas of mathematics, and\nare unified by the intuition that $\\int^\\mathcal{A}\\mathbf{Alg} $ is a form of\nsemidirect product of the category $\\mathcal{A}$, acting on $\\mathcal{X}$, via\nthe `representation' given by the functor $F : \\mathcal{A} \\times \\mathcal{X}\n\\longrightarrow\\mathcal{X}$. After presenting a range of examples and motivating said intuition, the\npresent work focuses on comparing a generic fibration with a fibration of\nalgebras: we prove that if $\\mathcal{A}$ has an initial object, under very mild\nassumptions on a fibration $p : \\mathcal{E}\\longrightarrow \\mathcal{A}$, we can\ndefine a canonical action of $\\mathcal{A}$ letting it act on the fibre\n$\\mathcal{E}_\\varnothing$ over the initial object. This result bears some\nresemblance to the well-known fact that the fundamental group $\\pi_1(B)$ of a\nbase space acts naturally on the fibers $F_b = p^{-1}b$ of a fibration $p : E\n\\to B$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study fibrations arising from indexed categories of the following form:
fix two categories $\mathcal{A},\mathcal{X}$ and a functor $F : \mathcal{A}
\times \mathcal{X} \longrightarrow\mathcal{X} $, so that to each $F_A=F(A,-)$
one can associate a category of algebras $\mathbf{Alg}_\mathcal{X}(F_A)$ (or an
Eilenberg-Moore, or a Kleisli category if each $F_A$ is a monad). We call the
functor $\int^{\mathcal{A}}\mathbf{Alg} \to \mathcal{A}$, whose typical fibre
over $A$ is the category $\mathbf{Alg}_\mathcal{X}(F_A)$, the "fibration of
algebras" obtained from $F$. Examples of such constructions arise in disparate areas of mathematics, and
are unified by the intuition that $\int^\mathcal{A}\mathbf{Alg} $ is a form of
semidirect product of the category $\mathcal{A}$, acting on $\mathcal{X}$, via
the `representation' given by the functor $F : \mathcal{A} \times \mathcal{X}
\longrightarrow\mathcal{X}$. After presenting a range of examples and motivating said intuition, the
present work focuses on comparing a generic fibration with a fibration of
algebras: we prove that if $\mathcal{A}$ has an initial object, under very mild
assumptions on a fibration $p : \mathcal{E}\longrightarrow \mathcal{A}$, we can
define a canonical action of $\mathcal{A}$ letting it act on the fibre
$\mathcal{E}_\varnothing$ over the initial object. This result bears some
resemblance to the well-known fact that the fundamental group $\pi_1(B)$ of a
base space acts naturally on the fibers $F_b = p^{-1}b$ of a fibration $p : E
\to B$.