Fibrations of algebras

Danel Ahman, Greta Coraglia, Davide Castelnovo, Fosco Loregian, Nelson Martins-Ferreira, Ülo Reimaa
{"title":"Fibrations of algebras","authors":"Danel Ahman, Greta Coraglia, Davide Castelnovo, Fosco Loregian, Nelson Martins-Ferreira, Ülo Reimaa","doi":"arxiv-2408.16581","DOIUrl":null,"url":null,"abstract":"We study fibrations arising from indexed categories of the following form:\nfix two categories $\\mathcal{A},\\mathcal{X}$ and a functor $F : \\mathcal{A}\n\\times \\mathcal{X} \\longrightarrow\\mathcal{X} $, so that to each $F_A=F(A,-)$\none can associate a category of algebras $\\mathbf{Alg}_\\mathcal{X}(F_A)$ (or an\nEilenberg-Moore, or a Kleisli category if each $F_A$ is a monad). We call the\nfunctor $\\int^{\\mathcal{A}}\\mathbf{Alg} \\to \\mathcal{A}$, whose typical fibre\nover $A$ is the category $\\mathbf{Alg}_\\mathcal{X}(F_A)$, the \"fibration of\nalgebras\" obtained from $F$. Examples of such constructions arise in disparate areas of mathematics, and\nare unified by the intuition that $\\int^\\mathcal{A}\\mathbf{Alg} $ is a form of\nsemidirect product of the category $\\mathcal{A}$, acting on $\\mathcal{X}$, via\nthe `representation' given by the functor $F : \\mathcal{A} \\times \\mathcal{X}\n\\longrightarrow\\mathcal{X}$. After presenting a range of examples and motivating said intuition, the\npresent work focuses on comparing a generic fibration with a fibration of\nalgebras: we prove that if $\\mathcal{A}$ has an initial object, under very mild\nassumptions on a fibration $p : \\mathcal{E}\\longrightarrow \\mathcal{A}$, we can\ndefine a canonical action of $\\mathcal{A}$ letting it act on the fibre\n$\\mathcal{E}_\\varnothing$ over the initial object. This result bears some\nresemblance to the well-known fact that the fundamental group $\\pi_1(B)$ of a\nbase space acts naturally on the fibers $F_b = p^{-1}b$ of a fibration $p : E\n\\to B$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study fibrations arising from indexed categories of the following form: fix two categories $\mathcal{A},\mathcal{X}$ and a functor $F : \mathcal{A} \times \mathcal{X} \longrightarrow\mathcal{X} $, so that to each $F_A=F(A,-)$ one can associate a category of algebras $\mathbf{Alg}_\mathcal{X}(F_A)$ (or an Eilenberg-Moore, or a Kleisli category if each $F_A$ is a monad). We call the functor $\int^{\mathcal{A}}\mathbf{Alg} \to \mathcal{A}$, whose typical fibre over $A$ is the category $\mathbf{Alg}_\mathcal{X}(F_A)$, the "fibration of algebras" obtained from $F$. Examples of such constructions arise in disparate areas of mathematics, and are unified by the intuition that $\int^\mathcal{A}\mathbf{Alg} $ is a form of semidirect product of the category $\mathcal{A}$, acting on $\mathcal{X}$, via the `representation' given by the functor $F : \mathcal{A} \times \mathcal{X} \longrightarrow\mathcal{X}$. After presenting a range of examples and motivating said intuition, the present work focuses on comparing a generic fibration with a fibration of algebras: we prove that if $\mathcal{A}$ has an initial object, under very mild assumptions on a fibration $p : \mathcal{E}\longrightarrow \mathcal{A}$, we can define a canonical action of $\mathcal{A}$ letting it act on the fibre $\mathcal{E}_\varnothing$ over the initial object. This result bears some resemblance to the well-known fact that the fundamental group $\pi_1(B)$ of a base space acts naturally on the fibers $F_b = p^{-1}b$ of a fibration $p : E \to B$.
代数的裂变
我们研究由以下形式的索引范畴产生的纤维:固定两个范畴 $\mathcal{A},\mathcal{X}$ 和一个函子 $F :\mathcal{A} \times \mathcal{X} \longrightarrow\mathcal{X} $,这样对于每个 $F_A=F(A,-)$,我们都可以关联一个代数范畴 $\mathbf{Alg}_\mathcal{X}(F_A)$ (或者一个艾伦伯格-摩尔范畴,或者一个克莱斯利范畴,如果每个 $F_A$ 都是一个单子的话)。我们把单元 $\int^{\mathcal{A}}\mathbf{Alg} 称为$\int^{/mathcal{A}}。\到 \mathcal{A}$,它在$A$上的典型纤维是类别$\mathbf{Alg}_\mathcal{X}(F_A)$,也就是从$F$得到的 "代数的纤维"。这种构造的例子出现在不同的数学领域,并且被这样的直觉所统一:$int^\mathcal{A}\mathbf{Alg}$是作用于$\mathcal{X}$的范畴$\mathcal{A}$的一种间接积形式,它是由函子$F : \mathcal{A}给出的 "表示"。\times \mathcal{X}\longrightarrow\mathcal{X}$.在介绍了一系列例子并激发了上述直觉之后,本文的工作重点是比较一般纤度与代数纤度:我们证明,如果$ \mathcal{A}$有一个初始对象,在非常温和的假设下,纤度$p :\我们可以定义 $\mathcal{A}$ 的典型作用,让它作用于初始对象上的纤维 $\mathcal{E}_\varnothing$ 。这一结果与众所周知的事实有些相似,即基底空间的基群 $\pi_1(B)$ 自然地作用于纤维 $F_b = p^{-1}b$ 的纤维 $p :E\to B$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信