Tricategorical Universal Properties Via Enriched Homotopy Theory

Adrian Miranda
{"title":"Tricategorical Universal Properties Via Enriched Homotopy Theory","authors":"Adrian Miranda","doi":"arxiv-2409.01837","DOIUrl":null,"url":null,"abstract":"We develop the theory of tricategorical limits and colimits, and show that\nthey can be modelled up to biequivalence via certain homotopically well-behaved\nlimits and colimits enriched over the monoidal model category $\\mathbf{Gray}$\nof $2$-categories and $2$-functors. This categorifies the relationship that\nbicategorical limits and colimits have with the so called `flexible' enriched\nlimits in $2$-category theory. As examples, we establish the tricategorical\nuniversal properties of Kleisli constructions for pseudomonads, Eilenberg-Moore\nand Kleisli constructions for (op)monoidal pseudomonads, centre constructions\nfor $\\mathbf{Gray}$-monoids, and strictifications of bicategories and\npseudo-double categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of tricategorical limits and colimits, and show that they can be modelled up to biequivalence via certain homotopically well-behaved limits and colimits enriched over the monoidal model category $\mathbf{Gray}$ of $2$-categories and $2$-functors. This categorifies the relationship that bicategorical limits and colimits have with the so called `flexible' enriched limits in $2$-category theory. As examples, we establish the tricategorical universal properties of Kleisli constructions for pseudomonads, Eilenberg-Moore and Kleisli constructions for (op)monoidal pseudomonads, centre constructions for $\mathbf{Gray}$-monoids, and strictifications of bicategories and pseudo-double categories.
通过丰富同调理论实现三类普遍属性
我们发展了三分类极限和列极限的理论,并证明它们可以通过某些在 2 元范畴和 2 元函数的单元模型范畴 $\mathbf{Gray}$ 上富集的同拓扑性良好的极限和列极限来建模到等价。这就把二分类极限和列极限与 2 元范畴理论中所谓 "灵活的 "丰富极限的关系归类了。作为例子,我们建立了假单子的克莱斯利构造、(开)单体假单子的艾伦伯格-摩尔和克莱斯利构造、$\mathbf{Gray}$-单体的中心构造以及二元范畴和伪二元范畴的严格化的三元通用性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信