Presheaf automata

Georg Struth, Krzysztof Ziemiański
{"title":"Presheaf automata","authors":"Georg Struth, Krzysztof Ziemiański","doi":"arxiv-2409.04612","DOIUrl":null,"url":null,"abstract":"We introduce presheaf automata as a generalisation of different variants of\nhigher-dimensional automata and other automata-like formalisms, including Petri\nnets and vector addition systems. We develop the foundations of a language\ntheory for them based on notions of paths and track objects. We also define\nopen maps for presheaf automata, extending the standard notions of simulation\nand bisimulation for transition systems. Apart from these conceptual\ncontributions, we show that certain finite-type presheaf automata subsume all\nPetri nets, generalising a previous result by van Glabbeek, which applies to\nhigher-dimensional automata and safe Petri nets.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce presheaf automata as a generalisation of different variants of higher-dimensional automata and other automata-like formalisms, including Petri nets and vector addition systems. We develop the foundations of a language theory for them based on notions of paths and track objects. We also define open maps for presheaf automata, extending the standard notions of simulation and bisimulation for transition systems. Apart from these conceptual contributions, we show that certain finite-type presheaf automata subsume all Petri nets, generalising a previous result by van Glabbeek, which applies to higher-dimensional automata and safe Petri nets.
预设自动机
我们介绍的预设自动机是对高维自动机和其他类似自动机形式的不同变体(包括 Petrinets 和向量加法系统)的概括。我们以路径和轨迹对象的概念为基础,为它们建立了语言理论的基础。我们还定义了预叶自动机的开放映射,扩展了过渡系统的标准模拟和双模拟概念。除了这些概念上的贡献之外,我们还证明了某些有限型预设自动机包含所有 Petri 网,从而推广了 van Glabbeek 以前的一个结果,该结果适用于高维自动机和安全 Petri 网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信