A Fibrational Theory of First Order Differential Structures

Matteo Capucci, Geoffrey S. H. Cruttwell, Neil Ghani, Fabio Zanasi
{"title":"A Fibrational Theory of First Order Differential Structures","authors":"Matteo Capucci, Geoffrey S. H. Cruttwell, Neil Ghani, Fabio Zanasi","doi":"arxiv-2409.05763","DOIUrl":null,"url":null,"abstract":"We develop a categorical framework for reasoning about abstract properties of\ndifferentiation, based on the theory of fibrations. Our work encompasses the\nfirst-order fragments of several existing categorical structures for\ndifferentiation, including cartesian differential categories, generalised\ncartesian differential categories, tangent categories, as well as the versions\nof these categories axiomatising reverse derivatives. We explain uniformly and\nconcisely the requirements expressed by these structures, using sections of\nsuitable fibrations as unifying concept. Our perspective sheds light on their\nsimilarities and differences, as well as simplifying certain constructions from\nthe literature.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a categorical framework for reasoning about abstract properties of differentiation, based on the theory of fibrations. Our work encompasses the first-order fragments of several existing categorical structures for differentiation, including cartesian differential categories, generalised cartesian differential categories, tangent categories, as well as the versions of these categories axiomatising reverse derivatives. We explain uniformly and concisely the requirements expressed by these structures, using sections of suitable fibrations as unifying concept. Our perspective sheds light on their similarities and differences, as well as simplifying certain constructions from the literature.
一阶微分结构的振动理论
我们以纤维理论为基础,为推理微分的抽象属性建立了一个分类框架。我们的工作涵盖了现有的几种微分分类结构的一阶片段,包括笛卡尔微分范畴、广义笛卡尔微分范畴、切线范畴,以及这些范畴公理化反向导数的版本。我们使用合适纤维的截面作为统一概念,统一而精确地解释了这些结构所表达的要求。我们的观点揭示了它们的异同,并简化了文献中的某些构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信