Generic singularities of holomorphic foliations by curves on $\mathbb{P}^n$

Sahil Gehlawat, Viêt-Anh Nguyên
{"title":"Generic singularities of holomorphic foliations by curves on $\\mathbb{P}^n$","authors":"Sahil Gehlawat, Viêt-Anh Nguyên","doi":"arxiv-2409.06052","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}_d(\\mathbb{P}^n)$ be the space of all singular holomorphic\nfoliations by curves on $\\mathbb{P}^n$ ($n \\geq 2$) with degree $d \\geq 1.$ We\nshow that there is subset $\\mathcal{S}_d(\\mathbb{P}^n)$ of\n$\\mathcal{F}_d(\\mathbb{P}^n)$ with full Lebesgue measure with the following\nproperties: 1. for every $\\mathcal{F} \\in \\mathcal{S}_d(\\mathbb{P}^n),$ all singular\npoints of $\\mathcal{F}$ are linearizable hyperbolic. 2. If, moreover, $d \\geq 2,$ then every $\\mathcal{F}$ does not possess any\ninvariant algebraic curve.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{F}_d(\mathbb{P}^n)$ be the space of all singular holomorphic foliations by curves on $\mathbb{P}^n$ ($n \geq 2$) with degree $d \geq 1.$ We show that there is subset $\mathcal{S}_d(\mathbb{P}^n)$ of $\mathcal{F}_d(\mathbb{P}^n)$ with full Lebesgue measure with the following properties: 1. for every $\mathcal{F} \in \mathcal{S}_d(\mathbb{P}^n),$ all singular points of $\mathcal{F}$ are linearizable hyperbolic. 2. If, moreover, $d \geq 2,$ then every $\mathcal{F}$ does not possess any invariant algebraic curve.
$\mathbb{P}^n$上曲线全形叶状的泛奇点
让 $\mathcal{F}_d(\mathbb{P}^n)$ 是 $\mathbb{P}^n$ ($n \geq 2$)上所有度数为 $d \geq 1 的曲线的奇异全形变换空间。$ Weshow that there is subset $\mathcal{S}_d(\mathbb{P}^n)$ of$\mathcal{F}_d(\mathbb{P}^n)$ with full Lebesgue measure with the followingproperties:1. 对于每一个 $\mathcal{F}\在 \mathcal{S}_d(\mathbb{P}^n)中,$ $mathcal{F}$的所有奇点都是可线性化双曲的。2.此外,如果 $d \geq 2, $ 那么每个 $\mathcal{F}$ 都不具有任何不变的代数曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信