AI forecasting of higher-order wave modes of spinning binary black hole mergers

Victoria Tiki, Kiet Pham, Eliu Huerta
{"title":"AI forecasting of higher-order wave modes of spinning binary black hole mergers","authors":"Victoria Tiki, Kiet Pham, Eliu Huerta","doi":"arxiv-2409.03833","DOIUrl":null,"url":null,"abstract":"We present a physics-inspired transformer model that predicts the non-linear\ndynamics of higher-order wave modes emitted by quasi-circular, spinning,\nnon-precessing binary black hole mergers. The model forecasts the waveform\nevolution from the pre-merger phase through the ringdown, starting with an\ninput time-series spanning $ t \\in [-5000\\textrm{M}, -100\\textrm{M}) $. The\nmerger event, defined as the peak amplitude of waveforms that include the $l =\n|m| = 2$ modes, occurs at $ t = 0\\textrm{M} $. The transformer then generates\npredictions over the time range $ t \\in [-100\\textrm{M}, 130\\textrm{M}] $. We\nproduced training, evaluation and test sets using the NRHybSur3dq8 model,\nconsidering a signal manifold defined by mass ratios $ q \\in [1, 8] $; spin\ncomponents $ s^z_{\\{1,2\\}} \\in [-0.8, 0.8] $; modes up to $l \\leq 4$, including\nthe $(5,5)$ mode but excluding the $(4,0)$ and $(4,1)$ modes; and inclination\nangles $\\theta \\in [0, \\pi]$. We trained the model on 14,440,761 waveforms,\ncompleting the training in 15 hours using 16 NVIDIA A100 GPUs in the Delta\nsupercomputer. We used 4 H100 GPUs in the DeltaAI supercomputer to compute,\nwithin 7 hours, the overlap between ground truth and predicted waveforms using\na test set of 840,000 waveforms, finding that the mean and median overlaps over\nthe test set are 0.996 and 0.997, respectively. Additionally, we conducted\ninterpretability studies to elucidate the waveform features utilized by our\ntransformer model to produce accurate predictions. The scientific software used\nfor this work is released with this manuscript.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a physics-inspired transformer model that predicts the non-linear dynamics of higher-order wave modes emitted by quasi-circular, spinning, non-precessing binary black hole mergers. The model forecasts the waveform evolution from the pre-merger phase through the ringdown, starting with an input time-series spanning $ t \in [-5000\textrm{M}, -100\textrm{M}) $. The merger event, defined as the peak amplitude of waveforms that include the $l = |m| = 2$ modes, occurs at $ t = 0\textrm{M} $. The transformer then generates predictions over the time range $ t \in [-100\textrm{M}, 130\textrm{M}] $. We produced training, evaluation and test sets using the NRHybSur3dq8 model, considering a signal manifold defined by mass ratios $ q \in [1, 8] $; spin components $ s^z_{\{1,2\}} \in [-0.8, 0.8] $; modes up to $l \leq 4$, including the $(5,5)$ mode but excluding the $(4,0)$ and $(4,1)$ modes; and inclination angles $\theta \in [0, \pi]$. We trained the model on 14,440,761 waveforms, completing the training in 15 hours using 16 NVIDIA A100 GPUs in the Delta supercomputer. We used 4 H100 GPUs in the DeltaAI supercomputer to compute, within 7 hours, the overlap between ground truth and predicted waveforms using a test set of 840,000 waveforms, finding that the mean and median overlaps over the test set are 0.996 and 0.997, respectively. Additionally, we conducted interpretability studies to elucidate the waveform features utilized by our transformer model to produce accurate predictions. The scientific software used for this work is released with this manuscript.
旋转双黑洞合并的高阶波模式的人工智能预测
我们提出了一个物理学启发的变压器模型,该模型预测了准环形、旋转、非预处理双黑洞合并所发射的高阶波模式的非线性动力学。该模型预测了从合并前阶段到环减阶段的波形演变,从输入时间序列开始,跨度为 $ t \ in [-5000\textrm{M}, -100\textrm{M}) $。 合并事件定义为包括 $l =|m| = 2$ 模式的波形的峰值振幅,发生在 $ t = 0\textrm{M} 。然后,变换器在 [-100\textrm{M}, 130\textrm{M}] $ 的时间范围内生成预测。我们使用 NRHybSur3dq8 模型制作了训练集、评估集和测试集,考虑了由质量比 $ q (在 [1, 8] $ 之间)、自旋分量 $ s^z_{\{1, 2\}} 定义的信号流形。\in [-0.8, 0.8] $; modes up to $l \leq 4$, including the $(5,5)$ mode but excluding the $(4,0)$ and $(4,1)$ modes; and inclinationangles $\theta \ in [0, \pi]$.我们在14,440,761个波形上训练了模型,使用Deltas超级计算机中的16个英伟达A100 GPU在15个小时内完成了训练。我们使用 DeltaAI 超级计算机中的 4 个 H100 GPU,在 7 个小时内利用 840,000 个波形的测试集计算了地面实况与预测波形之间的重叠度,发现测试集重叠度的平均值和中位数分别为 0.996 和 0.997。此外,我们还进行了可解释性研究,以阐明我们的变压器模型利用哪些波形特征进行准确预测。这项工作所使用的科学软件随本稿一起发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信