Bi-slant Riemannian maps to Kenmotsu manifolds and some optimal inequalities

Adeeba Zaidi, Gauree Shanker
{"title":"Bi-slant Riemannian maps to Kenmotsu manifolds and some optimal inequalities","authors":"Adeeba Zaidi, Gauree Shanker","doi":"arxiv-2409.01636","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce bi-slant Riemannian maps from Riemannian\nmanifolds to Kenmotsu manifolds, which are the natural generalizations of\ninvariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-slant\nRiemannian maps, with nontrivial examples. We study these maps and give some\ncurvature relations for $(rangeF_*)^\\perp$. We construct Chen-Ricci\ninequalities, DDVV inequalities, and further some optimal inequalities\ninvolving Casorati curvatures from bi-slant Riemannian manifolds to Kenmotsu\nspace forms.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce bi-slant Riemannian maps from Riemannian manifolds to Kenmotsu manifolds, which are the natural generalizations of invariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-slant Riemannian maps, with nontrivial examples. We study these maps and give some curvature relations for $(rangeF_*)^\perp$. We construct Chen-Ricci inequalities, DDVV inequalities, and further some optimal inequalities involving Casorati curvatures from bi-slant Riemannian manifolds to Kenmotsu space forms.
Kenmotsu 流形的双斜黎曼映射和一些最优不等式
在本文中,我们介绍了从黎曼流形到健莫流形的双斜黎曼映射,这些映射是不变、反不变、半不变、斜、半斜和半斜黎曼映射的自然广义,并举出了一些非难例。我们研究了这些映射,并给出了 $(rangeF_*)^\perp$ 的一些曲率关系。我们构建了从双斜黎曼流形到 Kenmotsuspace 形式的 Chen-Ricciine 不等式、DDVV 不等式,并进一步构建了一些涉及 Casorati 曲率的最优不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信