Cuspidal edges and generalized cuspidal edges in the Lorentz-Minkowski 3-space

T. Fukui, R. Kinoshita, D. Pei, M. Umehara, H. Yu
{"title":"Cuspidal edges and generalized cuspidal edges in the Lorentz-Minkowski 3-space","authors":"T. Fukui, R. Kinoshita, D. Pei, M. Umehara, H. Yu","doi":"arxiv-2409.01603","DOIUrl":null,"url":null,"abstract":"It is well-known that every cuspidal edge in the Euclidean space E^3 cannot\nhave a bounded mean curvature function. On the other hand, in the\nLorentz-Minkowski space L^3, zero mean curvature surfaces admit cuspidal edges.\nOne natural question is to ask when a cuspidal edge has bounded mean curvature\nin L^3. We show that such a phenomenon occurs only when the image of the\nsingular set is a light-like curve in L^3. Moreover, we also investigate the\nbehavior of principal curvatures in this case as well as other possible cases.\nIn this paper, almost all calculations are given for generalized cuspidal edges\nas well as for cuspidal edges. We define the \"order\" at each generalized\ncuspidal edge singular point is introduced. As nice classes of zero-mean\ncurvature surfaces in L^3,\"maxfaces\" and \"minfaces\" are known, and generalized\ncuspidal edge singular points on maxfaces and minfaces are of order four. One\nof the important results is that the generalized cuspidal edges of order four\nexhibit a quite similar behaviors as those on maxfaces and minfaces.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that every cuspidal edge in the Euclidean space E^3 cannot have a bounded mean curvature function. On the other hand, in the Lorentz-Minkowski space L^3, zero mean curvature surfaces admit cuspidal edges. One natural question is to ask when a cuspidal edge has bounded mean curvature in L^3. We show that such a phenomenon occurs only when the image of the singular set is a light-like curve in L^3. Moreover, we also investigate the behavior of principal curvatures in this case as well as other possible cases. In this paper, almost all calculations are given for generalized cuspidal edges as well as for cuspidal edges. We define the "order" at each generalized cuspidal edge singular point is introduced. As nice classes of zero-mean curvature surfaces in L^3,"maxfaces" and "minfaces" are known, and generalized cuspidal edge singular points on maxfaces and minfaces are of order four. One of the important results is that the generalized cuspidal edges of order four exhibit a quite similar behaviors as those on maxfaces and minfaces.
洛伦兹-闵科夫斯基 3 空间中的尖边和广义尖边
众所周知,欧几里得空间 E^3 中的每个尖顶边都不可能具有有界的平均曲率函数。另一方面,在洛伦兹-闵科夫斯基空间 L^3 中,零均值曲率曲面也包含尖顶边。一个自然的问题是,什么时候尖顶边在 L^3 中具有有界均值曲率。我们证明,只有当星形集的图像是 L^3 中的类光曲线时,才会出现这种现象。在本文中,几乎所有计算都是针对广义弧顶边和弧顶边的。我们定义了每个广义尖顶边缘奇点的 "阶"。作为 L^3 中零均值曲面的好类,"maxfaces "和 "minfaces "是已知的,而 maxfaces 和 minfaces 上的广义尖顶边奇异点是四阶的。其中一个重要结果是,四阶广义尖顶边的行为与最大面和最小面上的行为十分相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信