Sobolev Metrics on Spaces of Discrete Regular Curves

Jonathan CerqueiraFlorida State University, Emmanuel HartmanUniversity of Houston, Eric KlassenFlorida State University, Martin BauerFlorida State University
{"title":"Sobolev Metrics on Spaces of Discrete Regular Curves","authors":"Jonathan CerqueiraFlorida State University, Emmanuel HartmanUniversity of Houston, Eric KlassenFlorida State University, Martin BauerFlorida State University","doi":"arxiv-2409.02351","DOIUrl":null,"url":null,"abstract":"Reparametrization invariant Sobolev metrics on spaces of regular curves have\nbeen shown to be of importance in the field of mathematical shape analysis. For\npractical applications, one usually discretizes the space of smooth curves and\nconsiders the induced Riemannian metric on a finite dimensional approximation\nspace. Surprisingly, the theoretical properties of the corresponding finite\ndimensional Riemannian manifolds have not yet been studied in detail, which is\nthe content of the present article. Our main theorem concerns metric and\ngeodesic completeness and mirrors the results of the infinite dimensional\nsetting as obtained by Bruveris, Michor and Mumford.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reparametrization invariant Sobolev metrics on spaces of regular curves have been shown to be of importance in the field of mathematical shape analysis. For practical applications, one usually discretizes the space of smooth curves and considers the induced Riemannian metric on a finite dimensional approximation space. Surprisingly, the theoretical properties of the corresponding finite dimensional Riemannian manifolds have not yet been studied in detail, which is the content of the present article. Our main theorem concerns metric and geodesic completeness and mirrors the results of the infinite dimensional setting as obtained by Bruveris, Michor and Mumford.
离散正则曲线空间上的索波列夫度量
规则曲线空间上的重构不变 Sobolev 度量已被证明在数学形状分析领域具有重要意义。在实际应用中,人们通常将光滑曲线空间离散化,然后考虑有限维近似空间上的诱导黎曼度量。令人惊讶的是,人们尚未对相应的有限维黎曼流形的理论性质进行详细研究,而这正是本文的研究内容。我们的主要定理涉及度量和大地的完备性,并反映了布鲁维里斯、米乔和芒福德在无限维集上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信