{"title":"Monotonicity Formulas for Capillary Surfaces","authors":"Guofang Wang, Chao Xia, Xuwen Zhang","doi":"arxiv-2409.03314","DOIUrl":null,"url":null,"abstract":"In this paper, we establish monotonicity formulas for capillary surfaces in\nthe half-space $\\mathbb{R}^3_+$ and in the unit ball $\\mathbb{B}^3$ and extend\nthe result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.\n\\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})\nfor surfaces with free boundary. As applications, we obtain Li-Yau-type\ninequalities for the Willmore energy of capillary surfaces, and extend\nFraser-Schoen's optimal area estimate for minimal free boundary surfaces in\n$\\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.\n\\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})\nto the capillary setting, which is different to another optimal area estimate\nproved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.\n\\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish monotonicity formulas for capillary surfaces in
the half-space $\mathbb{R}^3_+$ and in the unit ball $\mathbb{B}^3$ and extend
the result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.
\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})
for surfaces with free boundary. As applications, we obtain Li-Yau-type
inequalities for the Willmore energy of capillary surfaces, and extend
Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in
$\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.
\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})
to the capillary setting, which is different to another optimal area estimate
proved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.
\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).