All-orders moduli for type II flux backgrounds

George R. Smith, David Tennyson, Daniel Waldram
{"title":"All-orders moduli for type II flux backgrounds","authors":"George R. Smith, David Tennyson, Daniel Waldram","doi":"arxiv-2409.03847","DOIUrl":null,"url":null,"abstract":"We investigate the old problem of determining the exact bulk moduli of\ngeneric $\\mathrm{SU}(3)$-structure flux backgrounds of type II string theory.\nUsing techniques from generalised geometry, we show that the infinitesimal\ndeformations are counted by a spectral sequence in which the vertical maps are\neither de Rham or Dolbeault differentials (depending on the type of the\nexceptional complex structure (ECS)) and the horizontal maps are linear maps\nconstructed from the flux and intrinsic torsion. Our calculation is exact,\ncovering all possible supergravity $\\mathrm{SU}(3)$-structure flux backgrounds\nincluding those which are not conformally Calabi--Yau, and goes beyond the\nusual linear approximation in three important ways: (i) we allow for finite\nflux; (ii) we consider perturbative higher-derivative corrections to the\nsupergravity action; and (iii) we consider obstructions arising from\nhigher-order deformations. Despite these extensions we find that the spectral\nsequence reproduces the na\\\"ive expectations that come from considering the\neffective superpotential in the small-flux limit. In particular, by writing the\nmoduli in a form that is independent of the K\\\"ahler potential on the space of\nECSs, and arguing the superpotential does not receive higher-derivative\ncorrections, we show that the spectral sequence is perturbatively exact.\nFurther, preliminary results show that a Tian--Todorov-like lemma implies that\nall the obstructions vanish. This has implications for the tadpole conjecture,\nshowing that such perturbative, higher-order effects do not provide a way of\ncircumventing the bound.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the old problem of determining the exact bulk moduli of generic $\mathrm{SU}(3)$-structure flux backgrounds of type II string theory. Using techniques from generalised geometry, we show that the infinitesimal deformations are counted by a spectral sequence in which the vertical maps are either de Rham or Dolbeault differentials (depending on the type of the exceptional complex structure (ECS)) and the horizontal maps are linear maps constructed from the flux and intrinsic torsion. Our calculation is exact, covering all possible supergravity $\mathrm{SU}(3)$-structure flux backgrounds including those which are not conformally Calabi--Yau, and goes beyond the usual linear approximation in three important ways: (i) we allow for finite flux; (ii) we consider perturbative higher-derivative corrections to the supergravity action; and (iii) we consider obstructions arising from higher-order deformations. Despite these extensions we find that the spectral sequence reproduces the na\"ive expectations that come from considering the effective superpotential in the small-flux limit. In particular, by writing the moduli in a form that is independent of the K\"ahler potential on the space of ECSs, and arguing the superpotential does not receive higher-derivative corrections, we show that the spectral sequence is perturbatively exact. Further, preliminary results show that a Tian--Todorov-like lemma implies that all the obstructions vanish. This has implications for the tadpole conjecture, showing that such perturbative, higher-order effects do not provide a way of circumventing the bound.
II 型通量背景的全阶模量
我们研究了一个老问题,即确定第二类弦理论的一般$\mathrm{SU}(3)$结构通量背景的精确体模量。利用广义几何的技术,我们证明了无穷小变形是由一个谱序列来计算的,在这个谱序列中,垂直映射是德拉姆微分或多尔贝微分(取决于例外复结构(ECS)的类型),水平映射是由通量和本征扭转构造的线性映射。我们的计算是精确的,涵盖了所有可能的超引力$\mathrm{SU}(3)$结构通量背景,包括那些不符合卡拉比--尤(Calabi--Yau)的背景,并在三个重要方面超越了通常的线性近似:(i)我们允许有限通量;(ii)我们考虑了超引力作用的扰动高阶衍生修正;(iii)我们考虑了高阶变形产生的阻碍。尽管做了这些扩展,我们发现谱序重现了在小通量极限中考虑有效超势能所带来的天真的预期。特别是,通过在ECS空间上以一种独立于K\"ahler势的形式书写超势能,并认为超势能没有得到高派生校正,我们表明谱序是扰动精确的。此外,初步结果表明,一个类似于Tian--Todorov的lemma意味着所有的障碍都消失了。这对蝌蚪猜想有影响,表明这种扰动的高阶效应并不能提供绕过约束的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信