Critical domains for certain Dirichlet integrals in weighted manifolds

Levi Lopes de Lima
{"title":"Critical domains for certain Dirichlet integrals in weighted manifolds","authors":"Levi Lopes de Lima","doi":"arxiv-2409.03554","DOIUrl":null,"url":null,"abstract":"We start by revisiting the derivation of the variational formulae for the\nfunctional assigning to a bounded regular domain in a Riemannian manifold its\nfirst Dirichlet eigenvalue and extend it to (not necessarily bounded) domains\nin certain weighted manifolds. This is further extended to other functionals\ndefined by certain Dirichlet energy integrals, with a Morse index formula for\nthe corresponding critical domains being established. We complement these\ninfinitesimal results by proving a couple of global rigidity theorems for\n(possibly critical) domains in Gaussian half-space, including an\nAlexandrov-type soap bubble theorem. Although we provide direct proofs of these\nlatter results, we find it worthwhile to point out that the main tools employed\n(specifically, certain Pohozhaev and Reilly identities) can be formally\nunderstood as limits (when the dimension goes to infinity) of tools previously\nestablished by Ciarolo-Vezzoni and Qiu-Xia to handle similar problems in round\nhemispheres, with the notion of ``convergence'' of weighted manifolds being\nloosely inspired by the celebrated Poincar\\'e's limit theorem in the theory of\nGaussian random vectors.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We start by revisiting the derivation of the variational formulae for the functional assigning to a bounded regular domain in a Riemannian manifold its first Dirichlet eigenvalue and extend it to (not necessarily bounded) domains in certain weighted manifolds. This is further extended to other functionals defined by certain Dirichlet energy integrals, with a Morse index formula for the corresponding critical domains being established. We complement these infinitesimal results by proving a couple of global rigidity theorems for (possibly critical) domains in Gaussian half-space, including an Alexandrov-type soap bubble theorem. Although we provide direct proofs of these latter results, we find it worthwhile to point out that the main tools employed (specifically, certain Pohozhaev and Reilly identities) can be formally understood as limits (when the dimension goes to infinity) of tools previously established by Ciarolo-Vezzoni and Qiu-Xia to handle similar problems in round hemispheres, with the notion of ``convergence'' of weighted manifolds being loosely inspired by the celebrated Poincar\'e's limit theorem in the theory of Gaussian random vectors.
加权流形中某些德里赫特积分的临界域
我们首先重温了为黎曼流形中的有界正则域分配其第一个狄利克特特征值的函数的变分公式的推导,并将其扩展到某些加权流形中的(不一定有界的)域。这进一步扩展到由某些狄利克特能量积分定义的其他函数,并建立了相应临界域的莫尔斯指数公式。我们通过证明高斯半空间中(可能是临界的)域的几个全局刚性定理(包括亚历山德罗夫型肥皂泡定理)来补充这些无限小结果。虽然我们提供了上述结果的直接证明,但我们认为值得指出的是,所使用的主要工具(特别是某些 Pohozhaev 和 Reilly 特性)可以被正式理解为 Ciarolo-Vezzoni 和 Qiu-Xia 以前建立的工具的极限(当维数达到无穷大时),以处理圆球中的类似问题、加权流形的 "收敛 "概念大致受到高斯随机向量理论中著名的 Poincar\'e' 极限定理的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信