The geometric Cauchy problem for constant-rank submanifolds

Matteo Raffaelli
{"title":"The geometric Cauchy problem for constant-rank submanifolds","authors":"Matteo Raffaelli","doi":"arxiv-2409.04358","DOIUrl":null,"url":null,"abstract":"Given a smooth $s$-dimensional submanifold $S$ of $\\mathbb{R}^{m+c}$ and a\nsmooth distribution $\\mathcal{D}\\supset TS$ of rank $m$ along $S$, we study the\nfollowing geometric Cauchy problem: to find an $m$-dimensional rank-$s$\nsubmanifold $M$ of $\\mathbb{R}^{m+c}$ (that is, an $m$-submanifold with\nconstant index of relative nullity $m-s$) such that $M \\supset S$ and $TM |_{S}\n= \\mathcal{D}$. In particular, under some reasonable assumption and using a\nconstructive approach, we show that a solution exists and is unique in a\nneighborhood of $S$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a smooth $s$-dimensional submanifold $S$ of $\mathbb{R}^{m+c}$ and a smooth distribution $\mathcal{D}\supset TS$ of rank $m$ along $S$, we study the following geometric Cauchy problem: to find an $m$-dimensional rank-$s$ submanifold $M$ of $\mathbb{R}^{m+c}$ (that is, an $m$-submanifold with constant index of relative nullity $m-s$) such that $M \supset S$ and $TM |_{S} = \mathcal{D}$. In particular, under some reasonable assumption and using a constructive approach, we show that a solution exists and is unique in a neighborhood of $S$.
恒等阶子漫游的几何考奇问题
给定$\mathbb{R}^{m+c}$的一个光滑的$s$维子漫游$S$和沿着$S$的秩为$m$的光滑分布$\mathcal{D}\supset TS$,我们研究下面的几何考奇问题:找到$\mathbb{R}^{m+c}$的一个$m$维秩为$s$的子曼形体$M$(即一个具有恒定的相对无效性指数$m-s$的$m$子曼形体),使得$M \supset S$和$TM |_{S}= \mathcal{D}$。特别是,在一些合理的假设下,使用一种结构性方法,我们证明在$S$的一个邻域中存在一个解,并且是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信