The decoupling of moduli about the standard embedding

Beatrice Chisamanga, Jock McOrist, Sebastien Picard, Eirik Eik Svanes
{"title":"The decoupling of moduli about the standard embedding","authors":"Beatrice Chisamanga, Jock McOrist, Sebastien Picard, Eirik Eik Svanes","doi":"arxiv-2409.04350","DOIUrl":null,"url":null,"abstract":"We study the cohomology of an elliptic differential complex arising from the\ninfinitesimal moduli of heterotic string theory. We compute these cohomology\ngroups at the standard embedding, and show that they decompose into a direct\nsum of cohomologies. While this is often assumed in the literature, it had not\nbeen explicitly demonstrated. Given a stable gauge bundle over a complex\nthreefold with trivial canonical bundle and no holomorphic vector fields, we\nalso show that the Euler characteristic of this differential complex is zero.\nThis points towards a perfect obstruction theory for the heterotic moduli\nproblem, at least for the most physically relevant compactifications.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the cohomology of an elliptic differential complex arising from the infinitesimal moduli of heterotic string theory. We compute these cohomology groups at the standard embedding, and show that they decompose into a direct sum of cohomologies. While this is often assumed in the literature, it had not been explicitly demonstrated. Given a stable gauge bundle over a complex threefold with trivial canonical bundle and no holomorphic vector fields, we also show that the Euler characteristic of this differential complex is zero. This points towards a perfect obstruction theory for the heterotic moduli problem, at least for the most physically relevant compactifications.
关于标准嵌入的解耦模量
我们研究由异质弦理论的无限模引起的椭圆微分复数的同调。我们在标准嵌入处计算了这些同调群,并证明它们分解为同调的直接和。虽然这在文献中经常被假设,但还没有被明确证明。给定复三褶上的稳定规束,它具有微不足道的典型束,并且没有全形向量场,我们还证明了这个微分复数的欧拉特征为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信