Local descriptions of the heterotic SU(3) moduli space

Hannah de Lázari, Jason D. Lotay, Henrique Sá Earp, Eirik Eik Svanes
{"title":"Local descriptions of the heterotic SU(3) moduli space","authors":"Hannah de Lázari, Jason D. Lotay, Henrique Sá Earp, Eirik Eik Svanes","doi":"arxiv-2409.04382","DOIUrl":null,"url":null,"abstract":"The heterotic $SU(3)$ system, also known as the Hull--Strominger system,\narises from compactifications of heterotic string theory to six dimensions.\nThis paper investigates the local structure of the moduli space of solutions to\nthis system on a compact 6-manifold $X$, using a vector bundle $Q=(T^{1,0}X)^*\n\\oplus {End}(E) \\oplus T^{1,0}X$, where $E\\to X$ is the classical gauge bundle\narising in the system. We establish that the moduli space has an expected\ndimension of zero. We achieve this by studying the deformation complex\nassociated to a differential operator $\\bar{D}$, which emulates a holomorphic\nstructure on $Q$, and demonstrating an isomorphism between the two cohomology\ngroups which govern the infinitesimal deformations and obstructions in the\ndeformation theory for the system. We also provide a Dolbeault-type theorem\nlinking these cohomology groups to \\v{C}ech cohomology, a result which might be\nof independent interest, as well as potentially valuable for future research.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heterotic $SU(3)$ system, also known as the Hull--Strominger system, arises from compactifications of heterotic string theory to six dimensions. This paper investigates the local structure of the moduli space of solutions to this system on a compact 6-manifold $X$, using a vector bundle $Q=(T^{1,0}X)^* \oplus {End}(E) \oplus T^{1,0}X$, where $E\to X$ is the classical gauge bundle arising in the system. We establish that the moduli space has an expected dimension of zero. We achieve this by studying the deformation complex associated to a differential operator $\bar{D}$, which emulates a holomorphic structure on $Q$, and demonstrating an isomorphism between the two cohomology groups which govern the infinitesimal deformations and obstructions in the deformation theory for the system. We also provide a Dolbeault-type theorem linking these cohomology groups to \v{C}ech cohomology, a result which might be of independent interest, as well as potentially valuable for future research.
异质 SU(3) 模态空间的局部描述
异弦$SU(3)$系统,又称赫尔--斯特罗姆格系统,产生于异弦理论在六维空间的紧凑化。本文使用向量束 $Q=(T^{1,0}X)^*\oplus {End}(E) \oplus T^{1,0}X$,其中 $E\to X$ 是该系统中出现的经典规规束,研究了该系统在紧凑的 6 维曲面 $X$ 上的解的模空间的局部结构。我们确定模空间的期望维度为零。我们通过研究与微分算子$\bar{D}$相关的变形复数来实现这一点,它模仿了$Q$上的全形结构,并证明了两个同调群之间的同构性,这两个同调群支配着系统变形理论中的无限小变形和障碍。我们还提供了一个将这些同调群与\v{C}ech 同调群联系起来的多尔博式定理,这一结果可能会引起独立的兴趣,并对未来的研究具有潜在的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信