{"title":"Existence of ground states for free energies on the hyperbolic space","authors":"José A. Carrillo, Razvan C. Fetecau, Hansol Park","doi":"arxiv-2409.06022","DOIUrl":null,"url":null,"abstract":"We investigate a free energy functional that arises in aggregation-diffusion\nphenomena modelled by nonlocal interactions and local repulsion on the\nhyperbolic space $\\bbh^\\dm$. The free energy consists of two competing terms:\nan entropy, corresponding to slow nonlinear diffusion, that favours spreading,\nand an attractive interaction potential energy that favours aggregation. We\nestablish necessary and sufficient conditions on the interaction potential for\nground states to exist on the hyperbolic space $\\bbh^\\dm$. To prove our results\nwe derived several Hardy-Littlewood-Sobolev (HLS)-type inequalities on general\nCartan-Hadamard manifolds of bounded curvature, which have an interest in their\nown.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a free energy functional that arises in aggregation-diffusion
phenomena modelled by nonlocal interactions and local repulsion on the
hyperbolic space $\bbh^\dm$. The free energy consists of two competing terms:
an entropy, corresponding to slow nonlinear diffusion, that favours spreading,
and an attractive interaction potential energy that favours aggregation. We
establish necessary and sufficient conditions on the interaction potential for
ground states to exist on the hyperbolic space $\bbh^\dm$. To prove our results
we derived several Hardy-Littlewood-Sobolev (HLS)-type inequalities on general
Cartan-Hadamard manifolds of bounded curvature, which have an interest in their
own.