Existence of ground states for free energies on the hyperbolic space

José A. Carrillo, Razvan C. Fetecau, Hansol Park
{"title":"Existence of ground states for free energies on the hyperbolic space","authors":"José A. Carrillo, Razvan C. Fetecau, Hansol Park","doi":"arxiv-2409.06022","DOIUrl":null,"url":null,"abstract":"We investigate a free energy functional that arises in aggregation-diffusion\nphenomena modelled by nonlocal interactions and local repulsion on the\nhyperbolic space $\\bbh^\\dm$. The free energy consists of two competing terms:\nan entropy, corresponding to slow nonlinear diffusion, that favours spreading,\nand an attractive interaction potential energy that favours aggregation. We\nestablish necessary and sufficient conditions on the interaction potential for\nground states to exist on the hyperbolic space $\\bbh^\\dm$. To prove our results\nwe derived several Hardy-Littlewood-Sobolev (HLS)-type inequalities on general\nCartan-Hadamard manifolds of bounded curvature, which have an interest in their\nown.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a free energy functional that arises in aggregation-diffusion phenomena modelled by nonlocal interactions and local repulsion on the hyperbolic space $\bbh^\dm$. The free energy consists of two competing terms: an entropy, corresponding to slow nonlinear diffusion, that favours spreading, and an attractive interaction potential energy that favours aggregation. We establish necessary and sufficient conditions on the interaction potential for ground states to exist on the hyperbolic space $\bbh^\dm$. To prove our results we derived several Hardy-Littlewood-Sobolev (HLS)-type inequalities on general Cartan-Hadamard manifolds of bounded curvature, which have an interest in their own.
双曲空间自由能的基态存在性
我们研究了在双曲空间 $\bbh^\dm$ 上以非局部相互作用和局部排斥为模型的聚集-扩散现象中产生的自由能函数。自由能由两个竞争项组成:一个是有利于扩散的熵,与缓慢的非线性扩散相对应;另一个是有利于聚集的吸引力相互作用势能。我们建立了双曲空间 $\bbh^\dm$ 上存在地面状态的相互作用势能的必要条件和充分条件。为了证明我们的结果,我们在有界曲率的一般卡尔坦-哈达玛流形上推导出了几个哈代-利特尔伍德-索博列夫(HLS)型不等式,这些不等式在该领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信