A Note on Ricci-pinched three-manifolds

Luca Benatti, Carlo Mantegazza, Francesca Oronzio, Alessandra Pluda
{"title":"A Note on Ricci-pinched three-manifolds","authors":"Luca Benatti, Carlo Mantegazza, Francesca Oronzio, Alessandra Pluda","doi":"arxiv-2409.05078","DOIUrl":null,"url":null,"abstract":"Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold.\nSuppose that $(M,g)$ satisfies the Ricci--pinching condition\n$\\mathrm{Ric}\\geq\\varepsilon\\mathrm{R} g$ for some $\\varepsilon>0$, where\n$\\mathrm{Ric}$ and $\\mathrm{R}$ are the Ricci tensor and scalar curvature,\nrespectively. In this short note, we give an alternative proof based on\npotential theory of the fact that if $(M,g)$ has Euclidean volume growth, then\nit is flat. Deruelle-Schulze-Simon and by Huisken-K\\\"{o}rber have already shown\nthis result and together with the contributions by Lott and Lee-Topping led to\na proof of the so-called Hamilton's pinching conjecture.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold. Suppose that $(M,g)$ satisfies the Ricci--pinching condition $\mathrm{Ric}\geq\varepsilon\mathrm{R} g$ for some $\varepsilon>0$, where $\mathrm{Ric}$ and $\mathrm{R}$ are the Ricci tensor and scalar curvature, respectively. In this short note, we give an alternative proof based on potential theory of the fact that if $(M,g)$ has Euclidean volume growth, then it is flat. Deruelle-Schulze-Simon and by Huisken-K\"{o}rber have already shown this result and together with the contributions by Lott and Lee-Topping led to a proof of the so-called Hamilton's pinching conjecture.
关于里奇夹角三漫游的说明
假设$(M,g)$满足里奇夹角条件$\mathrm{Ric}\geq\varepsilon\mathrm{R} g$ for some $\varepsilon>0$, 其中$\mathrm{Ric}$ 和$\mathrm{R}$ 分别是里奇张量和标量曲率。在这篇短文中,我们基于势论给出了另一种证明,即如果 $(M,g)$ 具有欧几里得体积增长,那么它就是平坦的。Deruelle-Schulze-Simon和Huisken-K"{o}rber已经证明了这一结果,再加上Lott和Lee-Topping的贡献,导致了所谓汉密尔顿捏合猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信