Failure of famous functional inequalities on Finsler manifolds: the influence of $S$-curvature

Alexandru Kristály, Benling Li, Wei Zhao
{"title":"Failure of famous functional inequalities on Finsler manifolds: the influence of $S$-curvature","authors":"Alexandru Kristály, Benling Li, Wei Zhao","doi":"arxiv-2409.05497","DOIUrl":null,"url":null,"abstract":"The validity of functional inequalities on Finsler metric measure manifolds\nis based on three non-Riemannian quantities, namely, the reversibility, flag\ncurvature and $S$-curvature induced by the measure. Under mild assumptions on\nthe reversibility and flag curvature, it turned out that famous functional\ninequalities -- as Hardy inequality, Heisenberg--Pauli--Weyl uncertainty\nprinciple and Caffarelli--Kohn--Nirenberg inequality -- usually hold on forward\ncomplete Finsler manifolds with non-positive $S$-curvature, cf. Huang,\nKrist\\'aly and Zhao [Trans. Amer. Math. Soc., 2020]. In this paper however we\nprove that -- under similar assumptions on the reversibility and flag curvature\nas before -- the aforementioned functional inequalities fail whenever the\n$S$-curvature is positive. Accordingly, our results clearly reveal the deep\ndependence of functional inequalities on the $S$-curvature. As a consequence of\nthese results, we establish surprising analytic aspects of Finsler manifolds:\nif the flag curvature is non-positive, the Ricci curvature is bounded from\nbelow and the $S$-curvature is positive, then the reversibility turns out to be\ninfinite. Examples are presented on general Funk metric spaces, where the\n$S$-curvature plays again a decisive role.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The validity of functional inequalities on Finsler metric measure manifolds is based on three non-Riemannian quantities, namely, the reversibility, flag curvature and $S$-curvature induced by the measure. Under mild assumptions on the reversibility and flag curvature, it turned out that famous functional inequalities -- as Hardy inequality, Heisenberg--Pauli--Weyl uncertainty principle and Caffarelli--Kohn--Nirenberg inequality -- usually hold on forward complete Finsler manifolds with non-positive $S$-curvature, cf. Huang, Krist\'aly and Zhao [Trans. Amer. Math. Soc., 2020]. In this paper however we prove that -- under similar assumptions on the reversibility and flag curvature as before -- the aforementioned functional inequalities fail whenever the $S$-curvature is positive. Accordingly, our results clearly reveal the deep dependence of functional inequalities on the $S$-curvature. As a consequence of these results, we establish surprising analytic aspects of Finsler manifolds: if the flag curvature is non-positive, the Ricci curvature is bounded from below and the $S$-curvature is positive, then the reversibility turns out to be infinite. Examples are presented on general Funk metric spaces, where the $S$-curvature plays again a decisive role.
芬斯勒流形上著名函数不等式的失效:$S$曲率的影响
芬斯勒度量流形上函数不等式的有效性基于三个非黎曼量,即度量引起的可逆性、旗曲率和$S$曲率。在对可逆性和旗曲率的温和假设下,结果发现著名的函数不等式--如Hardy不等式、Heisenberg--Pauli--Weyltyprinciple和Caffarelli--Kohn--Nirenberg不等式--通常在具有非正$S$曲率的前向完全Finsler流形上成立,参见Huang, Krist\'aly and Zhao [Trans. Amer. Math. Soc., 2020]。然而,在本文中,我们证明--在与之前相似的可逆性和旗曲率假设下--只要$S$曲率为正,上述函数不等式就失效。因此,我们的结果清楚地揭示了函数不等式对$S$曲率的深刻依赖性。由于这些结果,我们建立了令人惊讶的芬斯勒流形的分析方面:如果旗曲率是非正的,里奇曲率从下往上是有界的,而$S$曲率是正的,那么可逆性就会变成无限的。在一般丰克度量空间中,$S$曲率也起着决定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信